當前位置: 首頁>>代碼示例>>Python>>正文


Python pycocotools.mask方法代碼示例

本文整理匯總了Python中pycocotools.mask方法的典型用法代碼示例。如果您正苦於以下問題:Python pycocotools.mask方法的具體用法?Python pycocotools.mask怎麽用?Python pycocotools.mask使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pycocotools的用法示例。


在下文中一共展示了pycocotools.mask方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import pycocotools [as 別名]
# 或者: from pycocotools import mask [as 別名]
def __init__(self,
                 args,
                 base_dir=Path.db_root_dir('coco'),
                 split='train',
                 year='2017'):
        super().__init__()
        ann_file = os.path.join(base_dir, 'annotations/instances_{}{}.json'.format(split, year))
        ids_file = os.path.join(base_dir, 'annotations/{}_ids_{}.pth'.format(split, year))
        self.img_dir = os.path.join(base_dir, 'images/{}{}'.format(split, year))
        self.split = split
        self.coco = COCO(ann_file)
        self.coco_mask = mask
        if os.path.exists(ids_file):
            self.ids = torch.load(ids_file)
        else:
            ids = list(self.coco.imgs.keys())
            self.ids = self._preprocess(ids, ids_file)
        self.args = args 
開發者ID:clovaai,項目名稱:overhaul-distillation,代碼行數:20,代碼來源:coco.py

示例2: _preprocess

# 需要導入模塊: import pycocotools [as 別名]
# 或者: from pycocotools import mask [as 別名]
def _preprocess(self, ids, ids_file):
        print("Preprocessing mask, this will take a while. " + \
              "But don't worry, it only run once for each split.")
        tbar = trange(len(ids))
        new_ids = []
        for i in tbar:
            img_id = ids[i]
            cocotarget = self.coco.loadAnns(self.coco.getAnnIds(imgIds=img_id))
            img_metadata = self.coco.loadImgs(img_id)[0]
            mask = self._gen_seg_mask(cocotarget, img_metadata['height'],
                                      img_metadata['width'])
            # more than 1k pixels
            if (mask > 0).sum() > 1000:
                new_ids.append(img_id)
            tbar.set_description('Doing: {}/{}, got {} qualified images'. \
                                 format(i, len(ids), len(new_ids)))
        print('Found number of qualified images: ', len(new_ids))
        torch.save(new_ids, ids_file)
        return new_ids 
開發者ID:clovaai,項目名稱:overhaul-distillation,代碼行數:21,代碼來源:coco.py

示例3: _gen_seg_mask

# 需要導入模塊: import pycocotools [as 別名]
# 或者: from pycocotools import mask [as 別名]
def _gen_seg_mask(self, target, h, w):
        mask = np.zeros((h, w), dtype=np.uint8)
        coco_mask = self.coco_mask
        for instance in target:
            rle = coco_mask.frPyObjects(instance['segmentation'], h, w)
            m = coco_mask.decode(rle)
            cat = instance['category_id']
            if cat in self.CAT_LIST:
                c = self.CAT_LIST.index(cat)
            else:
                continue
            if len(m.shape) < 3:
                mask[:, :] += (mask == 0) * (m * c)
            else:
                mask[:, :] += (mask == 0) * (((np.sum(m, axis=2)) > 0) * c).astype(np.uint8)
        return mask 
開發者ID:clovaai,項目名稱:overhaul-distillation,代碼行數:18,代碼來源:coco.py

示例4: __init__

# 需要導入模塊: import pycocotools [as 別名]
# 或者: from pycocotools import mask [as 別名]
def __init__(self, root='datasets/coco', split='train', mode=None, transform=None, **kwargs):
        super(COCOSegmentation, self).__init__(root, split, mode, transform, **kwargs)
        # lazy import pycocotools
        from pycocotools.coco import COCO
        from pycocotools import mask
        if split == 'train':
            print('train set')
            ann_file = os.path.join(root, 'annotations/instances_train2017.json')
            ids_file = os.path.join(root, 'annotations/train_ids.pkl')
            self.root = os.path.join(root, 'train2017')
        else:
            print('val set')
            ann_file = os.path.join(root, 'annotations/instances_val2017.json')
            ids_file = os.path.join(root, 'annotations/val_ids.pkl')
            self.root = os.path.join(root, 'val2017')
        self.coco = COCO(ann_file)
        self.coco_mask = mask
        if os.path.exists(ids_file):
            with open(ids_file, 'rb') as f:
                self.ids = pickle.load(f)
        else:
            ids = list(self.coco.imgs.keys())
            self.ids = self._preprocess(ids, ids_file)
        self.transform = transform 
開發者ID:LikeLy-Journey,項目名稱:SegmenTron,代碼行數:26,代碼來源:mscoco.py

示例5: __getitem__

# 需要導入模塊: import pycocotools [as 別名]
# 或者: from pycocotools import mask [as 別名]
def __getitem__(self, index):
        coco = self.coco
        img_id = self.ids[index]
        img_metadata = coco.loadImgs(img_id)[0]
        path = img_metadata['file_name']
        img = Image.open(os.path.join(self.root, path)).convert('RGB')
        cocotarget = coco.loadAnns(coco.getAnnIds(imgIds=img_id))
        mask = Image.fromarray(self._gen_seg_mask(
            cocotarget, img_metadata['height'], img_metadata['width']))
        # synchrosized transform
        if self.mode == 'train':
            img, mask = self._sync_transform(img, mask)
        elif self.mode == 'val':
            img, mask = self._val_sync_transform(img, mask)
        else:
            assert self.mode == 'testval'
            img, mask = self._img_transform(img), self._mask_transform(mask)
        # general resize, normalize and toTensor
        if self.transform is not None:
            img = self.transform(img)
        return img, mask, os.path.basename(path) 
開發者ID:LikeLy-Journey,項目名稱:SegmenTron,代碼行數:23,代碼來源:mscoco.py

示例6: _preprocess

# 需要導入模塊: import pycocotools [as 別名]
# 或者: from pycocotools import mask [as 別名]
def _preprocess(self, ids, ids_file):
        print("Preprocessing mask, this will take a while." + \
              "But don't worry, it only run once for each split.")
        tbar = trange(len(ids))
        new_ids = []
        for i in tbar:
            img_id = ids[i]
            cocotarget = self.coco.loadAnns(self.coco.getAnnIds(imgIds=img_id))
            img_metadata = self.coco.loadImgs(img_id)[0]
            mask = self._gen_seg_mask(cocotarget, img_metadata['height'], img_metadata['width'])
            # more than 1k pixels
            if (mask > 0).sum() > 1000:
                new_ids.append(img_id)
            tbar.set_description('Doing: {}/{}, got {} qualified images'. \
                                 format(i, len(ids), len(new_ids)))
        print('Found number of qualified images: ', len(new_ids))
        with open(ids_file, 'wb') as f:
            pickle.dump(new_ids, f)
        return new_ids 
開發者ID:LikeLy-Journey,項目名稱:SegmenTron,代碼行數:21,代碼來源:mscoco.py

示例7: __getitem__

# 需要導入模塊: import pycocotools [as 別名]
# 或者: from pycocotools import mask [as 別名]
def __getitem__(self, index):
        coco = self.coco
        img_id = self.ids[index]
        img_metadata = coco.loadImgs(img_id)[0]
        path = img_metadata['file_name']
        img = Image.open(os.path.join(self.root, path)).convert('RGB')
        cocotarget = coco.loadAnns(coco.getAnnIds(imgIds=img_id))
        mask = Image.fromarray(self._gen_seg_mask(
            cocotarget, img_metadata['height'], img_metadata['width']))
        # synchrosized transform
        if self.mode == 'train':
            img, mask = self._sync_transform(img, mask)
        elif self.mode == 'val':
            img, mask = self._val_sync_transform(img, mask)
        else:
            assert self.mode == 'testval'
            img, mask = self._img_transform(img), self._mask_transform(mask)
        # general resize, normalize and toTensor
        if self.transform is not None:
            img = self.transform(img)
        return img, mask 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:23,代碼來源:segmentation.py

示例8: _preprocess

# 需要導入模塊: import pycocotools [as 別名]
# 或者: from pycocotools import mask [as 別名]
def _preprocess(self, ids, ids_file):
        print("Preprocessing mask, this will take a while." + \
              "But don't worry, it only run once for each split.")
        tbar = trange(len(ids))
        new_ids = []
        for i in tbar:
            img_id = ids[i]
            cocotarget = self.coco.loadAnns(self.coco.getAnnIds(imgIds=img_id))
            img_metadata = self.coco.loadImgs(img_id)[0]
            mask = self._gen_seg_mask(cocotarget, img_metadata['height'],
                                      img_metadata['width'])
            # more than 1k pixels
            if (mask > 0).sum() > 1000:
                new_ids.append(img_id)
            tbar.set_description('Doing: {}/{}, got {} qualified images'.\
                format(i, len(ids), len(new_ids)))
        print('Found number of qualified images: ', len(new_ids))
        with open(ids_file, 'wb') as f:
            pickle.dump(new_ids, f)
        return new_ids 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:22,代碼來源:segmentation.py

示例9: __getitem__

# 需要導入模塊: import pycocotools [as 別名]
# 或者: from pycocotools import mask [as 別名]
def __getitem__(self, index):
        coco = self.coco
        img_id = self.ids[index]
        img_metadata = coco.loadImgs(img_id)[0]
        path = img_metadata['file_name']
        img = Image.open(os.path.join(self.root, path)).convert('RGB')
        cocotarget = coco.loadAnns(coco.getAnnIds(imgIds=img_id))
        mask = Image.fromarray(self._gen_seg_mask(
            cocotarget, img_metadata['height'], img_metadata['width']))
        # synchrosized transform
        if self.mode == 'train':
            img, mask = self._sync_transform(img, mask)
        elif self.mode == 'val':
            img, mask = self._val_sync_transform(img, mask)
        else:
            assert self.mode == 'testval'
            mask = self._mask_transform(mask)
        # general resize, normalize and toTensor
        if self.transform is not None:
            img = self.transform(img)
        if self.target_transform is not None:
            mask = self.target_transform(mask)
        return img, mask 
開發者ID:zhanghang1989,項目名稱:PyTorch-Encoding,代碼行數:25,代碼來源:coco.py

示例10: _preprocess

# 需要導入模塊: import pycocotools [as 別名]
# 或者: from pycocotools import mask [as 別名]
def _preprocess(self, ids, ids_file):
        print("Preprocessing mask, this will take a while." + \
            "But don't worry, it only run once for each split.")
        tbar = trange(len(ids))
        new_ids = []
        for i in tbar:
            img_id = ids[i]
            cocotarget = self.coco.loadAnns(self.coco.getAnnIds(imgIds=img_id))
            img_metadata = self.coco.loadImgs(img_id)[0]
            mask = self._gen_seg_mask(cocotarget, img_metadata['height'], 
                                      img_metadata['width'])
            # more than 1k pixels
            if (mask > 0).sum() > 1000:
                new_ids.append(img_id)
            tbar.set_description('Doing: {}/{}, got {} qualified images'.\
                format(i, len(ids), len(new_ids)))
        print('Found number of qualified images: ', len(new_ids))
        torch.save(new_ids, ids_file)
        return new_ids 
開發者ID:zhanghang1989,項目名稱:PyTorch-Encoding,代碼行數:21,代碼來源:coco.py

示例11: __init__

# 需要導入模塊: import pycocotools [as 別名]
# 或者: from pycocotools import mask [as 別名]
def __init__(self, root='../datasets/coco', split='train', mode=None, transform=None, **kwargs):
        super(COCOSegmentation, self).__init__(root, split, mode, transform, **kwargs)
        # lazy import pycocotools
        from pycocotools.coco import COCO
        from pycocotools import mask
        if split == 'train':
            print('train set')
            ann_file = os.path.join(root, 'annotations/instances_train2017.json')
            ids_file = os.path.join(root, 'annotations/train_ids.mx')
            self.root = os.path.join(root, 'train2017')
        else:
            print('val set')
            ann_file = os.path.join(root, 'annotations/instances_val2017.json')
            ids_file = os.path.join(root, 'annotations/val_ids.mx')
            self.root = os.path.join(root, 'val2017')
        self.coco = COCO(ann_file)
        self.coco_mask = mask
        if os.path.exists(ids_file):
            with open(ids_file, 'rb') as f:
                self.ids = pickle.load(f)
        else:
            ids = list(self.coco.imgs.keys())
            self.ids = self._preprocess(ids, ids_file)
        self.transform = transform 
開發者ID:Tramac,項目名稱:awesome-semantic-segmentation-pytorch,代碼行數:26,代碼來源:mscoco.py

示例12: __getitem__

# 需要導入模塊: import pycocotools [as 別名]
# 或者: from pycocotools import mask [as 別名]
def __getitem__(self, index):
        coco = self.coco
        img_id = self.ids[index]
        img_metadata = coco.loadImgs(img_id)[0]
        path = img_metadata['file_name']
        img = Image.open(os.path.join(self.root, path)).convert('RGB')
        cocotarget = coco.loadAnns(coco.getAnnIds(imgIds=img_id))
        mask = Image.fromarray(self._gen_seg_mask(
            cocotarget, img_metadata['height'], img_metadata['width']))
        # synchrosized transform
        if self.mode == 'train':
            img, mask = self._sync_transform(img, mask)
        elif self.mode == 'val':
            img, mask = self._val_sync_transform(img, mask)
        else:
            assert self.mode == 'testval'
            img, mask = self._img_transform(img), self._mask_transform(mask)
        # general resize, normalize and toTensor
        if self.transform is not None:
            img = self.transform(img)
        return img, mask, os.path.basename(self.ids[index]) 
開發者ID:Tramac,項目名稱:awesome-semantic-segmentation-pytorch,代碼行數:23,代碼來源:mscoco.py

示例13: _gen_seg_mask

# 需要導入模塊: import pycocotools [as 別名]
# 或者: from pycocotools import mask [as 別名]
def _gen_seg_mask(self, target, h, w):
        mask = np.zeros((h, w), dtype=np.uint8)
        coco_mask = self.coco_mask
        for instance in target:
            rle = coco_mask.frPyObjects(instance['Segmentation'], h, w)
            m = coco_mask.decode(rle)
            cat = instance['category_id']
            if cat in self.CAT_LIST:
                c = self.CAT_LIST.index(cat)
            else:
                continue
            if len(m.shape) < 3:
                mask[:, :] += (mask == 0) * (m * c)
            else:
                mask[:, :] += (mask == 0) * (((np.sum(m, axis=2)) > 0) * c).astype(np.uint8)
        return mask 
開發者ID:Tramac,項目名稱:awesome-semantic-segmentation-pytorch,代碼行數:18,代碼來源:mscoco.py

示例14: _create_ann

# 需要導入模塊: import pycocotools [as 別名]
# 或者: from pycocotools import mask [as 別名]
def _create_ann(whole_m, lbl, sc, img_id, ann_id, crw=None, ar=None):
    H, W = whole_m.shape
    if crw is None:
        crw = False
    whole_m = np.asfortranarray(whole_m.astype(np.uint8))
    rle = pycocotools.mask.encode(whole_m)
    # Surprisingly, ground truth ar can be different from area(rle)
    if ar is None:
        ar = pycocotools.mask.area(rle)
    ann = {
        'image_id': img_id, 'category_id': lbl,
        'segmentation': rle,
        'area': ar,
        'id': ann_id,
        'iscrowd': crw}
    if sc is not None:
        ann.update({'score': sc})
    return ann 
開發者ID:wkentaro,項目名稱:chainer-mask-rcnn,代碼行數:20,代碼來源:eval_instance_segmentation_coco.py

示例15: _gen_seg_mask

# 需要導入模塊: import pycocotools [as 別名]
# 或者: from pycocotools import mask [as 別名]
def _gen_seg_mask(self, target, h, w):
        mask = np.zeros((h, w), dtype=np.uint8)
        coco_mask = self.coco_mask
        for instance in target:
            rle = coco_mask.frPyObjects(instance['segmentation'], h, w)
            m = coco_mask.decode(rle)
            cat = instance['category_id']
            if self.coco2voc[cat] != 0:
                c = self.coco2voc[cat]
            else:
                continue
            if len(m.shape) < 3:
                mask[:, :] += (mask == 0) * (m * c)
            else:
                mask[:, :] += (mask == 0) * (((np.sum(m, axis=2)) > 0) * c).astype(np.uint8)
        return mask 
開發者ID:YudeWang,項目名稱:deeplabv3plus-pytorch,代碼行數:18,代碼來源:COCODataset.py


注:本文中的pycocotools.mask方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。