當前位置: 首頁>>代碼示例>>Python>>正文


Python mask.encode方法代碼示例

本文整理匯總了Python中pycocotools.mask.encode方法的典型用法代碼示例。如果您正苦於以下問題:Python mask.encode方法的具體用法?Python mask.encode怎麽用?Python mask.encode使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pycocotools.mask的用法示例。


在下文中一共展示了mask.encode方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __get_annotation__

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import encode [as 別名]
def __get_annotation__(self, mask, image=None):

        _, contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

        segmentation = []
        for contour in contours:
            # Valid polygons have >= 6 coordinates (3 points)
            if contour.size >= 6:
                segmentation.append(contour.flatten().tolist())
        RLEs = cocomask.frPyObjects(segmentation, mask.shape[0], mask.shape[1])
        RLE = cocomask.merge(RLEs)
        # RLE = cocomask.encode(np.asfortranarray(mask))
        area = cocomask.area(RLE)
        [x, y, w, h] = cv2.boundingRect(mask)

        if image is not None:
            image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
            cv2.drawContours(image, contours, -1, (0,255,0), 1)
            cv2.rectangle(image,(x,y),(x+w,y+h), (255,0,0), 2)
            cv2.imshow("", image)
            cv2.waitKey(1)

        return segmentation, [x, y, w, h], area 
開發者ID:hazirbas,項目名稱:coco-json-converter,代碼行數:25,代碼來源:generate_coco_json.py

示例2: build_coco_results

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import encode [as 別名]
def build_coco_results(dataset, image_ids, rois, class_ids, scores, masks):
    """Arrange resutls to match COCO specs in http://cocodataset.org/#format
    """
    # If no results, return an empty list
    if rois is None:
        return []

    results = []
    for image_id in image_ids:
        # Loop through detections
        for i in range(rois.shape[0]):
            class_id = class_ids[i]
            score = scores[i]
            bbox = np.around(rois[i], 1)
            mask = masks[:, :, i]

            result = {
                "image_id": image_id,
                "category_id": dataset.get_source_class_id(class_id, "coco"),
                "bbox": [bbox[1], bbox[0], bbox[3] - bbox[1], bbox[2] - bbox[0]],
                "score": score,
                "segmentation": maskUtils.encode(np.asfortranarray(mask))
            }
            results.append(result)
    return results 
開發者ID:dataiku,項目名稱:dataiku-contrib,代碼行數:27,代碼來源:coco.py

示例3: forward

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import encode [as 別名]
def forward(self, x, boxes):
        import pycocotools.mask as mask_util
        import numpy as np

        results = super(MaskPostProcessorCOCOFormat, self).forward(x, boxes)
        for result in results:
            masks = result.get_field("mask").cpu()
            rles = [
                mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0]
                for mask in masks
            ]
            for rle in rles:
                rle["counts"] = rle["counts"].decode("utf-8")
            result.add_field("mask", rles)
        return results


# the next two functions should be merged inside Masker
# but are kept here for the moment while we need them
# temporarily gor paste_mask_in_image 
開發者ID:Res2Net,項目名稱:Res2Net-maskrcnn,代碼行數:22,代碼來源:inference.py

示例4: load_image

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import encode [as 別名]
def load_image(filename, id_divisor=1000):
  img = np.array(Image.open(filename))
  obj_ids = np.unique(img)

  objects = []
  mask = np.zeros(img.shape, dtype=np.uint8, order="F")  # Fortran order needed for pycocos RLE tools
  for idx, obj_id in enumerate(obj_ids):
    if obj_id == 0:  # background
      continue
    mask.fill(0)
    pixels_of_elem = np.where(img == obj_id)
    mask[pixels_of_elem] = 1
    objects.append(SegmentedObject(
      rletools.encode(mask),
      obj_id // id_divisor,
      obj_id
    ))

  return objects 
開發者ID:tobiasfshr,項目名稱:MOTSFusion,代碼行數:21,代碼來源:io.py

示例5: _create_anno

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import encode [as 別名]
def _create_anno(msk, lb, sc, img_id, anno_id, ar=None, crw=None):
    H, W = msk.shape
    if crw is None:
        crw = False
    msk = np.asfortranarray(msk.astype(np.uint8))
    rle = mask_tools.encode(msk)
    if ar is None:
        # We compute dummy area to pass to pycocotools.
        # Note that area dependent scores are ignored afterwards.
        ar = mask_tools.area(rle)
    if crw is None:
        crw = False
    # Rounding is done to make the result consistent with COCO.
    anno = {
        'image_id': img_id, 'category_id': lb,
        'segmentation': rle,
        'area': ar,
        'id': anno_id,
        'iscrowd': crw}
    if sc is not None:
        anno.update({'score': sc})
    return anno 
開發者ID:chainer,項目名稱:chainercv,代碼行數:24,代碼來源:eval_instance_segmentation_coco.py

示例6: encode_mask_results

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import encode [as 別名]
def encode_mask_results(mask_results):
    """Encode bitmap mask to RLE code.

    Args:
        mask_results (list | tuple[list]): bitmap mask results.
            In mask scoring rcnn, mask_results is a tuple of (segm_results,
            segm_cls_score).

    Returns:
        list | tuple: RLE encoded mask.
    """
    if isinstance(mask_results, tuple):  # mask scoring
        cls_segms, cls_mask_scores = mask_results
    else:
        cls_segms = mask_results
    num_classes = len(cls_segms)
    encoded_mask_results = [[] for _ in range(num_classes)]
    for i in range(len(cls_segms)):
        for cls_segm in cls_segms[i]:
            encoded_mask_results[i].append(
                mask_util.encode(
                    np.array(
                        cls_segm[:, :, np.newaxis], order='F',
                        dtype='uint8'))[0])  # encoded with RLE
    if isinstance(mask_results, tuple):
        return encoded_mask_results, cls_mask_scores
    else:
        return encoded_mask_results 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:30,代碼來源:utils.py

示例7: rle_from_binary

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import encode [as 別名]
def rle_from_binary(prediction):
    prediction = np.asfortranarray(prediction)
    return cocomask.encode(prediction) 
開發者ID:minerva-ml,項目名稱:steppy-toolkit,代碼行數:5,代碼來源:utils.py

示例8: _RleCompress

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import encode [as 別名]
def _RleCompress(masks):
  """Compresses mask using Run-length encoding provided by pycocotools.

  Args:
    masks: uint8 numpy array of shape [mask_height, mask_width] with values in
    {0, 1}.

  Returns:
    A pycocotools Run-length encoding of the mask.
  """
  return mask.encode(np.asfortranarray(masks)) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:13,代碼來源:coco_tools.py

示例9: DensePoseMask2Polys

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import encode [as 別名]
def DensePoseMask2Polys(MaskGen):
    Polys = []
    for i in range(1, 15):
        current_polys = []
        current_mask = np.zeros([256, 256], dtype='uint8', order='F')
        idx = (MaskGen == i)
        current_mask[idx] = MaskGen[idx]
        if len(idx):
            current_polys = mask_utils.encode(current_mask)
        Polys.append(current_polys)
    return Polys 
開發者ID:soeaver,項目名稱:Parsing-R-CNN,代碼行數:13,代碼來源:densepose_uv.py

示例10: process_panoptic_prediction

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import encode [as 別名]
def process_panoptic_prediction(panoptic_pred, num_stuff, idx, img_size, original_size):
    # Extract panoptic prediction
    msk_pred, cat_pred, obj_pred, iscrowd_pred = panoptic_pred

    bbx_pred = extract_boxes(msk_pred, cat_pred.numel())

    # Convert bbx and redo clamping
    bbx_pred[:, [0, 2]] = (bbx_pred[:, [0, 2]] / img_size[0] * original_size[0]).clamp(min=0, max=original_size[0])
    bbx_pred[:, [1, 3]] = (bbx_pred[:, [1, 3]] / img_size[1] * original_size[1]).clamp(min=0, max=original_size[1])
    bbx_pred_size = bbx_pred[:, 2:] - bbx_pred[:, :2]

    outs = []
    for i, (obj_i, cat_i, bbx_i, iscrowd_i, bbx_size_i) in enumerate(zip(
            obj_pred, cat_pred, bbx_pred, iscrowd_pred, bbx_pred_size)):
        if iscrowd_i.item() == 1 or cat_i.item() < num_stuff or cat_i.item() == 255:
            continue
        out = dict(image_id=idx, category_id=int(cat_i.item()), score=float(obj_i.item()))

        out["bbox"] = [
            float(bbx_i[1].item()),
            float(bbx_i[0].item()),
            float(bbx_size_i[1].item()),
            float(bbx_size_i[0].item()),
        ]

        segmentation = msk_pred == i
        segmentation = Image.fromarray(segmentation.numpy()).resize(original_size[::-1], Image.NEAREST)
        out["segmentation"] = mask_encode(np.asfortranarray(np.array(segmentation)))
        out["segmentation"]["counts"] = str(out["segmentation"]["counts"], "utf-8")

        outs.append(out)

    return outs 
開發者ID:mapillary,項目名稱:seamseg,代碼行數:35,代碼來源:coco_ap.py

示例11: build_coco_results

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import encode [as 別名]
def build_coco_results(dataset, image_ids, rois, class_ids, scores, masks):
    """Arrange resutls to match COCO specs in http://cocodataset.org/#format
    """
    # If no results, return an empty list
    if rois is None:
        return []

    results = []
    for image_id in image_ids:
        # Loop through detections
        for i in range(rois.shape[0]):
            class_id = class_ids[i]
            score = scores[i]
            bbox = np.around(rois[i], 1)
            mask = masks[:, :, i]

            encodedMask = maskUtils.encode(np.asfortranarray(mask))
            encodedMask['counts'] = encodedMask['counts'].decode('utf8')

            result = {
                "image_id": image_id,
                "category_id": dataset.get_source_class_id(class_id, "coco"),
                "bbox": [bbox[1].item(), bbox[0].item(), (bbox[3] - bbox[1]).item(), (bbox[2] - bbox[0]).item()],
                "score": score.item(),
                "segmentation": encodedMask,
            }
            results.append(result)

    return results 
開發者ID:dmechea,項目名稱:PanopticSegmentation,代碼行數:31,代碼來源:coco.py

示例12: convert_panoptic_to_detection_coco_format_single_core

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import encode [as 別名]
def convert_panoptic_to_detection_coco_format_single_core(
    proc_id, annotations_set, categories, segmentations_folder, things_only
):
    annotations_detection = []
    for working_idx, annotation in enumerate(annotations_set):
        if working_idx % 100 == 0:
            print('Core: {}, {} from {} images processed'.format(proc_id,
                                                                 working_idx,
                                                                 len(annotations_set)))

        file_name = '{}.png'.format(annotation['file_name'].rsplit('.')[0])
        try:
            pan_format = np.array(
                Image.open(os.path.join(segmentations_folder, file_name)), dtype=np.uint32
            )
        except IOError:
            raise KeyError('no prediction png file for id: {}'.format(annotation['image_id']))
        pan = rgb2id(pan_format)

        for segm_info in annotation['segments_info']:
            if things_only and categories[segm_info['category_id']]['isthing'] != 1:
                continue
            mask = (pan == segm_info['id']).astype(np.uint8)
            mask = np.expand_dims(mask, axis=2)
            segm_info.pop('id')
            segm_info['image_id'] = annotation['image_id']
            segm_info['segmentation'] = COCOmask.encode(np.asfortranarray(mask))[0]
            annotations_detection.append(segm_info)

    print('Core: {}, all {} images processed'.format(proc_id, len(annotations_set)))
    return annotations_detection 
開發者ID:dmechea,項目名稱:PanopticSegmentation,代碼行數:33,代碼來源:panoptic2detection_coco_format.py

示例13: prepare_for_coco_segmentation

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import encode [as 別名]
def prepare_for_coco_segmentation(self, predictions):
        coco_results = []
        for original_id, prediction in predictions.items():
            if len(prediction) == 0:
                continue

            scores = prediction["scores"]
            labels = prediction["labels"]
            masks = prediction["masks"]

            masks = masks > 0.5

            scores = prediction["scores"].tolist()
            labels = prediction["labels"].tolist()

            rles = [
                mask_util.encode(
                    np.array(mask[0, :, :, np.newaxis], order="F")
                )[0]
                for mask in masks
            ]
            for rle in rles:
                rle["counts"] = rle["counts"].decode("utf-8")

            coco_results.extend(
                [
                    {
                        "image_id": original_id,
                        "category_id": labels[k],
                        "segmentation": rle,
                        "score": scores[k],
                    }
                    for k, rle in enumerate(rles)
                ]
            )
        return coco_results 
開發者ID:paperswithcode,項目名稱:torchbench,代碼行數:38,代碼來源:coco_eval.py

示例14: flip_segms

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import encode [as 別名]
def flip_segms(segms, height, width):
    """Left/right flip each mask in a list of masks."""
    def _flip_poly(poly, width):
        flipped_poly = np.array(poly)
        flipped_poly[0::2] = width - np.array(poly[0::2]) - 1
        return flipped_poly.tolist()

    def _flip_rle(rle, height, width):
        if 'counts' in rle and type(rle['counts']) == list:
            # Magic RLE format handling painfully discovered by looking at the
            # COCO API showAnns function.
            rle = mask_util.frPyObjects([rle], height, width)
        mask = mask_util.decode(rle)
        mask = mask[:, ::-1, :]
        rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
        return rle

    flipped_segms = []
    for segm in segms:
        if is_poly(segm):
            # Polygon format
            flipped_segms.append([_flip_poly(poly, width) for poly in segm])
        else:
            # RLE format
            flipped_segms.append(_flip_rle(segm, height, width))
    return flipped_segms 
開發者ID:yihui-he,項目名稱:KL-Loss,代碼行數:28,代碼來源:segms.py

示例15: flip_segms

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import encode [as 別名]
def flip_segms(self, segms, height, width): 
        """Left/right flip each mask in a list of masks."""
        flipped_segms = []
        for segm in segms:
            mask = np.fliplr(annToMask(segm, height, width))
            rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
            flipped_segms.append(rle)
        return flipped_segms 
開發者ID:liruilong940607,項目名稱:Pose2Seg,代碼行數:10,代碼來源:CocoDatasetInfo.py


注:本文中的pycocotools.mask.encode方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。