當前位置: 首頁>>代碼示例>>Python>>正文


Python mask.decode方法代碼示例

本文整理匯總了Python中pycocotools.mask.decode方法的典型用法代碼示例。如果您正苦於以下問題:Python mask.decode方法的具體用法?Python mask.decode怎麽用?Python mask.decode使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pycocotools.mask的用法示例。


在下文中一共展示了mask.decode方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testSingleImageDetectionMaskExport

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import decode [as 別名]
def testSingleImageDetectionMaskExport(self):
    masks = np.array(
        [[[1, 1,], [1, 1]],
         [[0, 0], [0, 1]],
         [[0, 0], [0, 0]]], dtype=np.uint8)
    classes = np.array([1, 2, 3], dtype=np.int32)
    scores = np.array([0.8, 0.2, 0.7], dtype=np.float32)
    coco_annotations = coco_tools.ExportSingleImageDetectionMasksToCoco(
        image_id='first_image',
        category_id_set=set([1, 2, 3]),
        detection_classes=classes,
        detection_scores=scores,
        detection_masks=masks)
    expected_counts = ['04', '31', '4']
    for i, mask_annotation in enumerate(coco_annotations):
      self.assertEqual(mask_annotation['segmentation']['counts'],
                       expected_counts[i])
      self.assertTrue(np.all(np.equal(mask.decode(
          mask_annotation['segmentation']), masks[i])))
      self.assertEqual(mask_annotation['image_id'], 'first_image')
      self.assertEqual(mask_annotation['category_id'], classes[i])
      self.assertAlmostEqual(mask_annotation['score'], scores[i]) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:24,代碼來源:coco_tools_test.py

示例2: polys_to_mask_wrt_box

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import decode [as 別名]
def polys_to_mask_wrt_box(polygons, box, M):
    """Convert from the COCO polygon segmentation format to a binary mask
    encoded as a 2D array of data type numpy.float32. The polygon segmentation
    is understood to be enclosed in the given box and rasterized to an M x M
    mask. The resulting mask is therefore of shape (M, M).
    """
    w = box[2] - box[0]
    h = box[3] - box[1]

    w = np.maximum(w, 1)
    h = np.maximum(h, 1)

    polygons_norm = []
    for poly in polygons:
        p = np.array(poly, dtype=np.float32)
        p[0::2] = (p[0::2] - box[0]) * M / w
        p[1::2] = (p[1::2] - box[1]) * M / h
        polygons_norm.append(p)

    rle = mask_util.frPyObjects(polygons_norm, M, M)
    mask = np.array(mask_util.decode(rle), dtype=np.float32)
    # Flatten in case polygons was a list
    mask = np.sum(mask, axis=2)
    mask = np.array(mask > 0, dtype=np.float32)
    return mask 
開發者ID:yihui-he,項目名稱:KL-Loss,代碼行數:27,代碼來源:segms.py

示例3: to_mask

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import decode [as 別名]
def to_mask(polys, size):
    """Convert list of polygons to full size binary mask

    Parameters
    ----------
    polys : list of numpy.ndarray
        Numpy.ndarray with shape (N, 2) where N is the number of bounding boxes.
        The second axis represents points of the polygons.
        Specifically, these are :math:`(x, y)`.
    size : tuple
        Tuple of length 2: (width, height).

    Returns
    -------
    numpy.ndarray
        Full size binary mask of shape (height, width)
    """
    try_import_pycocotools()
    import pycocotools.mask as cocomask
    width, height = size
    polys = [p.flatten().tolist() for p in polys]
    rles = cocomask.frPyObjects(polys, height, width)
    rle = cocomask.merge(rles)
    return cocomask.decode(rle) 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:26,代碼來源:mask.py

示例4: polys2mask_wrt_box

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import decode [as 別名]
def polys2mask_wrt_box(polygons, box, target_size):
        """Convert from the COCO polygon segmentation format to a binary mask
        encoded as a 2D array of data type numpy.float32. The polygon segmentation
        is understood to be enclosed in the given box and rasterized to an M x M
        mask. The resulting mask is therefore of shape (M, M).
        """
        w = box[2] - box[0]
        h = box[3] - box[1]

        w = np.maximum(w, 1)
        h = np.maximum(h, 1)

        polygons_norm = []
        for poly in polygons:
            p = np.array(poly, dtype=np.float32)
            p[0::2] = (p[0::2] - box[0]) * target_size[0] / w
            p[1::2] = (p[1::2] - box[1]) * target_size[1] / h
            polygons_norm.append(p)

        rle = mask_util.frPyObjects(polygons_norm, target_size[1], target_size[0])
        mask = np.array(mask_util.decode(rle), dtype=np.float32)
        # Flatten in case polygons was a list
        mask = np.sum(mask, axis=2)
        mask = np.array(mask > 0, dtype=np.float32)
        return mask 
開發者ID:openseg-group,項目名稱:openseg.pytorch,代碼行數:27,代碼來源:mask_helper.py

示例5: polys_to_mask_wrt_box

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import decode [as 別名]
def polys_to_mask_wrt_box(polygons, box, M):
  """Convert from the COCO polygon segmentation format to a binary mask
    encoded as a 2D array of data type numpy.float32. The polygon segmentation
    is understood to be enclosed in the given box and rasterized to an M x M
    mask. The resulting mask is therefore of shape (M, M).
    """
  w = box[2] - box[0]
  h = box[3] - box[1]

  w = np.maximum(w, 1)
  h = np.maximum(h, 1)

  polygons_norm = []
  for poly in polygons:
    p = np.array(poly, dtype=np.float32)
    p[0::2] = (p[0::2] - box[0]) * M / w
    p[1::2] = (p[1::2] - box[1]) * M / h
    polygons_norm.append(p)

  rle = mask_util.frPyObjects(polygons_norm, M, M)
  mask = np.array(mask_util.decode(rle), dtype=np.float32)
  # Flatten in case polygons was a list
  mask = np.sum(mask, axis=2)
  mask = np.array(mask > 0, dtype=np.float32)
  return mask 
開發者ID:roytseng-tw,項目名稱:Detectron.pytorch,代碼行數:27,代碼來源:segms.py

示例6: load_ann

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import decode [as 別名]
def load_ann(img,img_filename,annotation_filename):
    img_filename = img_filename.decode('utf-8')
    anns_for_img = self.filename_to_coco_anns[img_filename.split("/")[-1]]
    ann_id = int(annotation_filename.decode('utf-8'))
    ann = anns_for_img[ann_id]
    img_h, img_w = img.shape[:-1]

    if ann['area'] > 1 and isinstance(ann['segmentation'], list):
      segs = ann['segmentation']
      valid_segs = [np.asarray(p).reshape(-1, 2) for p in segs if len(p) >= 6]
      if len(valid_segs) < len(segs):
        print("Image {} has invalid polygons!".format(img_filename))
      output_ann = np.asarray(self.segmentation_to_mask(valid_segs, img_h, img_w), dtype='uint8')[
        ..., np.newaxis]  # Should be 1s and 0s
    else:
      output_ann = np.zeros((img_h, img_w, 1), dtype="uint8")

    return output_ann 
開發者ID:tobiasfshr,項目名稱:MOTSFusion,代碼行數:20,代碼來源:COCO_for_DAVIS.py

示例7: _poly2mask

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import decode [as 別名]
def _poly2mask(self, mask_ann, img_h, img_w):
        """Private function to convert masks represented with polygon to
        bitmaps.

        Args:
            mask_ann (list | dict): Polygon mask annotation input.
            img_h (int): The height of output mask.
            img_w (int): The width of output mask.

        Returns:
            numpy.ndarray: The decode bitmap mask of shape (img_h, img_w).
        """

        if isinstance(mask_ann, list):
            # polygon -- a single object might consist of multiple parts
            # we merge all parts into one mask rle code
            rles = maskUtils.frPyObjects(mask_ann, img_h, img_w)
            rle = maskUtils.merge(rles)
        elif isinstance(mask_ann['counts'], list):
            # uncompressed RLE
            rle = maskUtils.frPyObjects(mask_ann, img_h, img_w)
        else:
            # rle
            rle = mask_ann
        mask = maskUtils.decode(rle)
        return mask 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:28,代碼來源:loading.py

示例8: polygon_to_bitmap

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import decode [as 別名]
def polygon_to_bitmap(polygons, height, width):
    """Convert masks from the form of polygons to bitmaps.

    Args:
        polygons (list[ndarray]): masks in polygon representation
        height (int): mask height
        width (int): mask width

    Return:
        ndarray: the converted masks in bitmap representation
    """
    rles = maskUtils.frPyObjects(polygons, height, width)
    rle = maskUtils.merge(rles)
    bitmap_mask = maskUtils.decode(rle).astype(np.bool)
    return bitmap_mask 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:17,代碼來源:structures.py

示例9: binary_from_rle

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import decode [as 別名]
def binary_from_rle(rle):
    return cocomask.decode(rle) 
開發者ID:minerva-ml,項目名稱:steppy-toolkit,代碼行數:4,代碼來源:utils.py

示例10: convert

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import decode [as 別名]
def convert(self, mode):
        width, height = self.size
        if mode == "mask":
            rles = mask_utils.frPyObjects(
                [p.numpy() for p in self.polygons], height, width
            )
            rle = mask_utils.merge(rles)
            mask = mask_utils.decode(rle)
            mask = torch.from_numpy(mask)
            # TODO add squeeze?
            return mask 
開發者ID:Res2Net,項目名稱:Res2Net-maskrcnn,代碼行數:13,代碼來源:segmentation_mask.py

示例11: show_result

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import decode [as 別名]
def show_result(img, result, class_names, score_thr=0.3, out_file=None):
    """Visualize the detection results on the image.

    Args:
        img (str or np.ndarray): Image filename or loaded image.
        result (tuple[list] or list): The detection result, can be either
            (bbox, segm) or just bbox.
        class_names (list[str] or tuple[str]): A list of class names.
        score_thr (float): The threshold to visualize the bboxes and masks.
        out_file (str, optional): If specified, the visualization result will
            be written to the out file instead of shown in a window.
    """
    assert isinstance(class_names, (tuple, list))
    img = mmcv.imread(img)
    if isinstance(result, tuple):
        bbox_result, segm_result = result
    else:
        bbox_result, segm_result = result, None
    bboxes = np.vstack(bbox_result)
    # draw segmentation masks
    if segm_result is not None:
        segms = mmcv.concat_list(segm_result)
        inds = np.where(bboxes[:, -1] > score_thr)[0]
        for i in inds:
            color_mask = np.random.randint(0, 256, (1, 3), dtype=np.uint8)
            mask = maskUtils.decode(segms[i]).astype(np.bool)
            img[mask] = img[mask] * 0.5 + color_mask * 0.5
    # draw bounding boxes
    labels = [
        np.full(bbox.shape[0], i, dtype=np.int32)
        for i, bbox in enumerate(bbox_result)
    ]
    labels = np.concatenate(labels)
    mmcv.imshow_det_bboxes(
        img.copy(),
        bboxes,
        labels,
        class_names=class_names,
        score_thr=score_thr,
        show=out_file is None,
        out_file=out_file) 
開發者ID:dingjiansw101,項目名稱:AerialDetection,代碼行數:43,代碼來源:inference.py

示例12: seg2poly_old

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import decode [as 別名]
def seg2poly_old(rle):
    # TODO: debug for this function
    """
    This function transform a single encoded RLE to a single poly
    :param seg: RlE
    :return: poly
    """
    # try:
    #     binary_mask = mask_utils.decode(rle)
    #     contours, hierarchy = cv2.findContours(binary_mask, cv2.RETR_EXTERNAL)
    #     contour_lens = np.array(list(map(len, contours)))
    #     max_id = contour_lens.argmax()
    #     max_contour = contours[max_id]
    #     rect = cv2.minAreaRect(max_contour)
    #     poly = cv2.boxPoints(rect)
    #     return poly
    # except:
    #     return -1
    try:
        binary_mask = mask_utils.decode(rle)
        contours, hierarchy = cv2.findContours(binary_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        # len is not appropriate
        # contour_lens = np.array(list(map(len, contours)))
        # max_id = contour_lens.argmax()
        contour_areas = np.array(list(map(cv2.contourArea, contours)))
        max_id = contour_areas.argmax()
        max_contour = contours[max_id]
        rect = cv2.minAreaRect(max_contour)
        poly = cv2.boxPoints(rect)
        poly = TuplePoly2Poly(poly)
        return poly
    except:
        return [] 
開發者ID:dingjiansw101,項目名稱:AerialDetection,代碼行數:35,代碼來源:dota_utils.py

示例13: testExportSegmentsToCOCO

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import decode [as 別名]
def testExportSegmentsToCOCO(self):
    image_ids = ['first', 'second']
    detection_masks = [np.array(
        [[[0, 1, 0, 1], [0, 1, 1, 0], [0, 0, 0, 1], [0, 1, 0, 1]]],
        dtype=np.uint8), np.array(
            [[[0, 1, 0, 1], [0, 1, 1, 0], [0, 0, 0, 1], [0, 1, 0, 1]]],
            dtype=np.uint8)]

    for i, detection_mask in enumerate(detection_masks):
      detection_masks[i] = detection_mask[:, :, :, None]

    detection_scores = [np.array([.8], np.float), np.array([.7], np.float)]
    detection_classes = [np.array([1], np.int32), np.array([1], np.int32)]

    categories = [{'id': 0, 'name': 'person'},
                  {'id': 1, 'name': 'cat'},
                  {'id': 2, 'name': 'dog'}]
    output_path = os.path.join(tf.test.get_temp_dir(), 'segments.json')
    result = coco_tools.ExportSegmentsToCOCO(
        image_ids,
        detection_masks,
        detection_scores,
        detection_classes,
        categories,
        output_path=output_path)
    with tf.gfile.GFile(output_path, 'r') as f:
      written_result = f.read()
      written_result = json.loads(written_result)
      mask_load = mask.decode([written_result[0]['segmentation']])
      self.assertTrue(np.allclose(mask_load, detection_masks[0]))
      self.assertAlmostEqual(result, written_result) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:33,代碼來源:coco_tools_test.py

示例14: annToMask

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import decode [as 別名]
def annToMask(self, ann, height, width):
        """
        Convert annotation which can be polygons, uncompressed RLE, or RLE to binary mask.
        :return: binary mask (numpy 2D array)
        """
        rle = self.annToRLE(ann, height, width)
        m = maskUtils.decode(rle)
        return m


############################################################
#  COCO Evaluation
############################################################ 
開發者ID:dataiku,項目名稱:dataiku-contrib,代碼行數:15,代碼來源:coco.py

示例15: _decodeUvData

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import decode [as 別名]
def _decodeUvData(self, dt):
        from PIL import Image
        from io import StringIO
        uvData = dt['uv_data']
        uvShape = dt['uv_shape']
        fStream = StringIO.StringIO(uvData.decode('base64'))
        im = Image.open(fStream)
        data = np.rollaxis(np.array(im.getdata(), dtype=np.uint8), -1, 0)
        dt['uv'] = data.reshape(uvShape)
        del dt['uv_data']
        del dt['uv_shape'] 
開發者ID:soeaver,項目名稱:Parsing-R-CNN,代碼行數:13,代碼來源:densepose_cocoeval.py


注:本文中的pycocotools.mask.decode方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。