當前位置: 首頁>>代碼示例>>Python>>正文


Python mask.area方法代碼示例

本文整理匯總了Python中pycocotools.mask.area方法的典型用法代碼示例。如果您正苦於以下問題:Python mask.area方法的具體用法?Python mask.area怎麽用?Python mask.area使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pycocotools.mask的用法示例。


在下文中一共展示了mask.area方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __get_annotation__

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import area [as 別名]
def __get_annotation__(self, mask, image=None):

        _, contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

        segmentation = []
        for contour in contours:
            # Valid polygons have >= 6 coordinates (3 points)
            if contour.size >= 6:
                segmentation.append(contour.flatten().tolist())
        RLEs = cocomask.frPyObjects(segmentation, mask.shape[0], mask.shape[1])
        RLE = cocomask.merge(RLEs)
        # RLE = cocomask.encode(np.asfortranarray(mask))
        area = cocomask.area(RLE)
        [x, y, w, h] = cv2.boundingRect(mask)

        if image is not None:
            image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
            cv2.drawContours(image, contours, -1, (0,255,0), 1)
            cv2.rectangle(image,(x,y),(x+w,y+h), (255,0,0), 2)
            cv2.imshow("", image)
            cv2.waitKey(1)

        return segmentation, [x, y, w, h], area 
開發者ID:hazirbas,項目名稱:coco-json-converter,代碼行數:25,代碼來源:generate_coco_json.py

示例2: __init__

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import area [as 別名]
def __init__(self, groundtruth=None, detections=None, agnostic_mode=False,
               iou_type='bbox'):
    """COCOEvalWrapper constructor.

    Note that for the area-based metrics to be meaningful, detection and
    groundtruth boxes must be in image coordinates measured in pixels.

    Args:
      groundtruth: a coco.COCO (or coco_tools.COCOWrapper) object holding
        groundtruth annotations
      detections: a coco.COCO (or coco_tools.COCOWrapper) object holding
        detections
      agnostic_mode: boolean (default: False).  If True, evaluation ignores
        class labels, treating all detections as proposals.
      iou_type: IOU type to use for evaluation. Supports `bbox` or `segm`.
    """
    cocoeval.COCOeval.__init__(self, groundtruth, detections,
                               iouType=iou_type)
    if agnostic_mode:
      self.params.useCats = 0 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:22,代碼來源:coco_tools.py

示例3: _extract_bbox_annotation

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import area [as 別名]
def _extract_bbox_annotation(prediction, b, obj_i):
  """Constructs COCO format bounding box annotation."""
  height = prediction['height'][b]
  width = prediction['width'][b]
  bbox = _denormalize_to_coco_bbox(
      prediction['groundtruth_boxes'][b][obj_i, :], height, width)
  if 'groundtruth_area' in prediction:
    area = float(prediction['groundtruth_area'][b][obj_i])
  else:
    # Using the box area to replace the polygon area. This value will not affect
    # real evaluation but may fail the unit test.
    area = bbox[2] * bbox[3]
  annotation = {
      'id': b * 1000 + obj_i,  # place holder of annotation id.
      'image_id': int(prediction['source_id'][b]),  # source_id,
      'category_id': int(prediction['groundtruth_classes'][b][obj_i]),
      'bbox': bbox,
      'iscrowd': int(prediction['groundtruth_is_crowd'][b][obj_i]),
      'area': area,
      'segmentation': [],
  }
  return annotation 
開發者ID:artyompal,項目名稱:tpu_models,代碼行數:24,代碼來源:coco_utils.py

示例4: _create_anno

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import area [as 別名]
def _create_anno(msk, lb, sc, img_id, anno_id, ar=None, crw=None):
    H, W = msk.shape
    if crw is None:
        crw = False
    msk = np.asfortranarray(msk.astype(np.uint8))
    rle = mask_tools.encode(msk)
    if ar is None:
        # We compute dummy area to pass to pycocotools.
        # Note that area dependent scores are ignored afterwards.
        ar = mask_tools.area(rle)
    if crw is None:
        crw = False
    # Rounding is done to make the result consistent with COCO.
    anno = {
        'image_id': img_id, 'category_id': lb,
        'segmentation': rle,
        'area': ar,
        'id': anno_id,
        'iscrowd': crw}
    if sc is not None:
        anno.update({'score': sc})
    return anno 
開發者ID:chainer,項目名稱:chainercv,代碼行數:24,代碼來源:eval_instance_segmentation_coco.py

示例5: _create_ann

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import area [as 別名]
def _create_ann(whole_m, lbl, sc, img_id, ann_id, crw=None, ar=None):
    H, W = whole_m.shape
    if crw is None:
        crw = False
    whole_m = np.asfortranarray(whole_m.astype(np.uint8))
    rle = mask_tools.encode(whole_m)
    # Surprisingly, ground truth ar can be different from area(rle)
    if ar is None:
        ar = mask_tools.area(rle)
    ann = {
        'image_id': img_id, 'category_id': lbl,
        'segmentation': rle,
        'area': ar,
        'id': ann_id,
        'iscrowd': crw}
    if sc is not None:
        ann.update({'score': sc})
    return ann 
開發者ID:knorth55,項目名稱:chainer-fcis,代碼行數:20,代碼來源:eval_instance_segmentation_coco.py

示例6: eval_video

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import area [as 別名]
def eval_video(final_solution,input_images,ground_truth_anns):
  _,example_prop = final_solution[0]
  scores = np.zeros(len(example_prop))
  for image_fn,selected_props in final_solution[1:-1]:
    gt_fn = image_fn.replace(input_images, ground_truth_anns).replace('.jpg', '.png')
    gt_props = read_ann(gt_fn)
    segs = [prop['segmentation'] for prop in selected_props]
    gt_segs = [templ['segmentation'] for templ in gt_props]
    gt_ids = [templ['id'] for templ in gt_props]
    for temp_id,seg in enumerate(segs):
      gt_id = temp_id + 1
      if gt_id not in gt_ids:
        if area(seg)==0:
          score = 1
        else:
          score = 0
      else:
        gt_seg = [c_seg for c_seg,c_id in zip(gt_segs,gt_ids) if c_id == gt_id][0]
        score = iou([seg,], [gt_seg,], np.array([0], np.uint8))[0,0]
      scores[temp_id]+=score
  final_scores = scores/(len(final_solution)-2)
  return final_scores 
開發者ID:JonathonLuiten,項目名稱:PReMVOS,代碼行數:24,代碼來源:merge_functions.py

示例7: encode_mask_to_poly

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import area [as 別名]
def encode_mask_to_poly(mask, mask_id, image_id):
    if len(mask.shape) == 3:
        mask = cv.cvtColor(mask, cv.COLOR_BGR2GRAY)

    kernel = np.ones((2, 2), np.uint8)

    mask = cv.dilate(mask, kernel, iterations=1)
    _, C, h = cv.findContours(mask, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE)
    seg = [[float(x) for x in contour.flatten()] for contour in C]
    seg = [cont for cont in seg if len(cont) > 4]  # filter all polygons that are boxes
    rle = mask_util.frPyObjects(seg, mask.shape[0], mask.shape[1])

    return {
        'area': float(sum(mask_util.area(rle))),
        'bbox': list(mask_util.toBbox(rle)[0]),
        'category_id': 1,
        'id': mask_id,
        'image_id': image_id,
        'iscrowd': 0,
        'segmentation': seg
    } 
開發者ID:gangadhar-p,項目名稱:NucleiDetectron,代碼行數:23,代碼來源:mask_encoding.py

示例8: _annotation_generator

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import area [as 別名]
def _annotation_generator(self):
        """
        Generates sample_size annotations. No pre/post-processing
        :return: coco annotation (dictionary)
        """

        annotation_counter = 0

        for img_id in self._image_ids:
            annotation_ids = self._coco.getAnnIds(imgIds=img_id)
            for annotation in self._coco.loadAnns(annotation_ids):
                if annotation['area'] > self._config.area_threshold:
                    annotation_counter += 1
                    yield annotation
        if annotation_counter == 0:
            errmsg = 'Every annotation has been filtered out. ' \
                     'Decrease area threshold or increase image dimensions.'
            raise Exception(errmsg) 
開發者ID:PavlosMelissinos,項目名稱:enet-keras,代碼行數:20,代碼來源:datasets.py

示例9: mask_to_mscoco

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import area [as 別名]
def mask_to_mscoco(alpha, annotations, img_id, mode='rle'):
        if mode == 'rle':
            in_ = np.reshape(np.asfortranarray(alpha), (alpha.shape[0], alpha.shape[1], 1))
            in_ = np.asfortranarray(in_)
            rle = mask.encode(in_)
            segmentation = rle[0]
        else:
            raise ValueError('Unknown mask mode "{}"'.format(mode))
        for idx, c in enumerate(np.unique(alpha)):
            area = mask.area(rle).tolist()
            if isinstance(area, list):
                area = area[0]
            bbox = mask.toBbox(rle).tolist()
            if isinstance(bbox[0], list):
                bbox = bbox[0]
            annotation = {
                'area': area,
                'bbox': bbox,
                'category_id': c,
                'id': len(annotations)+idx,
                'image_id': img_id,
                'iscrowd': 0,
                'segmentation': segmentation}
            annotations.append(annotation)
        return annotations 
開發者ID:PavlosMelissinos,項目名稱:enet-keras,代碼行數:27,代碼來源:datasets.py

示例10: __init__

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import area [as 別名]
def __init__(self, groundtruth=None, detections=None, agnostic_mode=False,
               iou_type='bbox', oks_sigmas=None):
    """COCOEvalWrapper constructor.

    Note that for the area-based metrics to be meaningful, detection and
    groundtruth boxes must be in image coordinates measured in pixels.

    Args:
      groundtruth: a coco.COCO (or coco_tools.COCOWrapper) object holding
        groundtruth annotations
      detections: a coco.COCO (or coco_tools.COCOWrapper) object holding
        detections
      agnostic_mode: boolean (default: False).  If True, evaluation ignores
        class labels, treating all detections as proposals.
      iou_type: IOU type to use for evaluation. Supports `bbox', `segm`,
        `keypoints`.
      oks_sigmas: Float numpy array holding the OKS variances for keypoints.
    """
    cocoeval.COCOeval.__init__(self, groundtruth, detections, iouType=iou_type)
    if oks_sigmas is not None:
      self.params.kpt_oks_sigmas = oks_sigmas
    if agnostic_mode:
      self.params.useCats = 0
    self._iou_type = iou_type 
開發者ID:tensorflow,項目名稱:models,代碼行數:26,代碼來源:coco_tools.py

示例11: __get_image_annotation_pairs__

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import area [as 別名]
def __get_image_annotation_pairs__(self, image_set):
        images = []
        annotations = []
        for imId, paths in enumerate(image_set):
            impath, annotpath = paths[0], paths[1]
            print (impath)
            name = impath.split("/")[3]
            img = np.array(Image.open(os.path.join(self.datapath + impath)).convert('RGB'))
            mask = np.array(Image.open(os.path.join(self.datapath + annotpath)).convert('L'))
            if np.all(mask == 0):
                continue

            segmentation, bbox, area = self.__get_annotation__(mask, img)
            images.append({"date_captured" : "2016",
                           "file_name" : impath[1:], # remove "/"
                           "id" : imId+1,
                           "license" : 1,
                           "url" : "",
                           "height" : mask.shape[0],
                           "width" : mask.shape[1]})
            annotations.append({"segmentation" : segmentation,
                                "area" : np.float(area),
                                "iscrowd" : 0,
                                "image_id" : imId+1,
                                "bbox" : bbox,
                                "category_id" : self.cat2id[name],
                                "id": imId+1})
        return images, annotations 
開發者ID:hazirbas,項目名稱:coco-json-converter,代碼行數:30,代碼來源:generate_coco_json.py

示例12: load_txt

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import area [as 別名]
def load_txt(path):
  objects_per_frame = {}
  track_ids_per_frame = {}  # To check that no frame contains two objects with same id
  combined_mask_per_frame = {}  # To check that no frame contains overlapping masks
  with open(path, "r") as f:
    for line in f:
      line = line.strip()
      fields = line.split(" ")

      frame = int(fields[0])
      if frame not in objects_per_frame:
        objects_per_frame[frame] = []
      if frame not in track_ids_per_frame:
        track_ids_per_frame[frame] = set()
      if int(fields[1]) in track_ids_per_frame[frame]:
        assert False, "Multiple objects with track id " + fields[1] + " in frame " + fields[0]
      else:
        track_ids_per_frame[frame].add(int(fields[1]))

      class_id = int(fields[2])
      if not(class_id == 1 or class_id == 2 or class_id == 10):
        assert False, "Unknown object class " + fields[2]

      mask = {'size': [int(fields[3]), int(fields[4])], 'counts': fields[5].encode(encoding='UTF-8')}
      if frame not in combined_mask_per_frame:
        combined_mask_per_frame[frame] = mask
      elif rletools.area(rletools.merge([combined_mask_per_frame[frame], mask], intersect=True)) > 0.0:
        assert False, "Objects with overlapping masks in frame " + fields[0]
      else:
        combined_mask_per_frame[frame] = rletools.merge([combined_mask_per_frame[frame], mask], intersect=False)
      objects_per_frame[frame].append(SegmentedObject(
        mask,
        class_id,
        int(fields[1])
      ))

  return objects_per_frame 
開發者ID:tobiasfshr,項目名稱:MOTSFusion,代碼行數:39,代碼來源:io.py

示例13: fix_mask_overlap

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import area [as 別名]
def fix_mask_overlap(self, thresh=0.3):
        for t in range(self.timesteps):
            for id in range(self.get_num_ids()):
                if self.masks[t][id] is not None:
                    ref_mask = self.masks[t][id]

                    for k in range(id+1, self.get_num_ids()):
                        if self.masks[t][k] is not None:
                            overlap = cocomask.area(cocomask.merge([self.masks[t][k], ref_mask], intersect=True))
                            if overlap > 0.0:
                                if overlap > thresh * np.minimum(cocomask.area(ref_mask), cocomask.area(self.masks[t][k])):
                                    if cocomask.area(ref_mask) < cocomask.area(self.masks[t][k]):
                                        ref_mask = None
                                        break
                                    else:
                                        self.remove_from_track(t, k)

                                else:
                                    if cocomask.area(ref_mask) < cocomask.area(self.masks[t][k]):
                                        self.masks[t][k] = cut(self.masks[t][k], ref_mask)
                                    else:
                                        ref_mask = cut(ref_mask, self.masks[t][k])

                    self.masks[t][id] = ref_mask

                    if self.masks[t][id] is None:
                        self.remove_from_track(t, id) 
開發者ID:tobiasfshr,項目名稱:MOTSFusion,代碼行數:29,代碼來源:tracked_sequence.py

示例14: getAnnIds

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import area [as 別名]
def getAnnIds(self, imgIds=[], catIds=[], areaRng=[], iscrowd=None):
        """
        Get ann ids that satisfy given filter conditions. default skips that filter
        :param imgIds  (int array)     : get anns for given imgs
               catIds  (int array)     : get anns for given cats
               areaRng (float array)   : get anns for given area range (e.g. [0 inf])
               iscrowd (boolean)       : get anns for given crowd label (False or True)
        :return: ids (int array)       : integer array of ann ids
        """
        imgIds = imgIds if _isArrayLike(imgIds) else [imgIds]
        catIds = catIds if _isArrayLike(catIds) else [catIds]

        if len(imgIds) == len(catIds) == len(areaRng) == 0:
            anns = self.dataset['annotations']
        else:
            if not len(imgIds) == 0:
                lists = [self.imgToAnns[imgId] for imgId in imgIds if imgId in self.imgToAnns]
                anns = list(itertools.chain.from_iterable(lists))
            else:
                anns = self.dataset['annotations']
            anns = anns if len(catIds)  == 0 else [ann for ann in anns if ann['category_id'] in catIds]
            anns = anns if len(areaRng) == 0 else [ann for ann in anns if ann['area'] > areaRng[0] and ann['area'] < areaRng[1]]
        if not iscrowd == None:
            ids = [ann['id'] for ann in anns if ann['iscrowd'] == iscrowd]
        else:
            ids = [ann['id'] for ann in anns]
        return ids 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:29,代碼來源:coco.py

示例15: loadRes

# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import area [as 別名]
def loadRes(self, predictions):
    """Loads result file and return a result api object.

    Args:
      predictions: a list of dictionary each representing an annotation in COCO
        format. The required fields are `image_id`, `category_id`, `score`,
        `bbox`, `segmentation`.

    Returns:
      res: result COCO api object.

    Raises:
      ValueError: if the set of image id from predctions is not the subset of
        the set of image id of the groundtruth dataset.
    """
    res = coco.COCO()
    res.dataset['images'] = copy.deepcopy(self.dataset['images'])
    res.dataset['categories'] = copy.deepcopy(self.dataset['categories'])

    image_ids = [ann['image_id'] for ann in predictions]
    if set(image_ids) != (set(image_ids) & set(self.getImgIds())):
      raise ValueError('Results do not correspond to the current dataset!')
    for ann in predictions:
      x1, x2, y1, y2 = [ann['bbox'][0], ann['bbox'][0] + ann['bbox'][2],
                        ann['bbox'][1], ann['bbox'][1] + ann['bbox'][3]]
      if self._eval_type == 'box':
        ann['area'] = ann['bbox'][2] * ann['bbox'][3]
        ann['segmentation'] = [
            [x1, y1, x1, y2, x2, y2, x2, y1]]
      elif self._eval_type == 'mask':
        ann['bbox'] = mask_utils.toBbox(ann['segmentation'])
        ann['area'] = mask_utils.area(ann['segmentation'])

    res.dataset['annotations'] = copy.deepcopy(predictions)
    res.createIndex()
    return res 
開發者ID:artyompal,項目名稱:tpu_models,代碼行數:38,代碼來源:coco_utils.py


注:本文中的pycocotools.mask.area方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。