當前位置: 首頁>>代碼示例>>Python>>正文


Python pycocotools.coco方法代碼示例

本文整理匯總了Python中pycocotools.coco方法的典型用法代碼示例。如果您正苦於以下問題:Python pycocotools.coco方法的具體用法?Python pycocotools.coco怎麽用?Python pycocotools.coco使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pycocotools的用法示例。


在下文中一共展示了pycocotools.coco方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _dump_json

# 需要導入模塊: import pycocotools [as 別名]
# 或者: from pycocotools import coco [as 別名]
def _dump_json(self):
        """Write coco json file"""
        if not self._current_id == len(self._img_ids):
            warnings.warn(
                'Recorded {} out of {} validation images, incomplete results'.format(
                    self._current_id, len(self._img_ids)))
        import json
        try:
            if self._use_ext:
                with open(self._bbox_filename, 'w') as f:
                    json.dump(self._bbox_result, f)
                with open(self._segm_filename, 'w') as f:
                    json.dump(self._segm_result, f)
            else:
                with open(self._filename, 'w') as f:
                    json.dump(self._results, f)
        except IOError as e:
            raise RuntimeError("Unable to dump json file, ignored. What(): {}".format(str(e))) 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:20,代碼來源:coco_instance.py

示例2: get_example

# 需要導入模塊: import pycocotools [as 別名]
# 或者: from pycocotools import coco [as 別名]
def get_example(self, i):
        img_id = self.img_ids[i]
        ann_ids = self.coco.getAnnIds(imgIds=img_id)
        anns = self.coco.loadAnns(ann_ids)

        img_fname = self.img_fname.format(img_id)
        img = skimage.io.imread(img_fname)
        if img.ndim == 2:
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)

        example = self._annotations_to_example(
            anns, img.shape[0], img.shape[1])

        # img, bboxes, labels, masks
        # or img, bboxes, labels, masks, crowds
        # or img, bboxes, labels, masks, areas
        # or img, bboxes, labels, masks, crowds, areas
        return tuple([img] + example) 
開發者ID:wkentaro,項目名稱:chainer-mask-rcnn,代碼行數:20,代碼來源:coco.py

示例3: __init__

# 需要導入模塊: import pycocotools [as 別名]
# 或者: from pycocotools import coco [as 別名]
def __init__(self, dataset, save_prefix, use_time=True, cleanup=False,
                 use_ext=False, starting_id=0, score_thresh=1e-3):
        self._starting_id = starting_id
        self._use_ext = use_ext
        super(COCOInstanceMetric, self).__init__('COCOInstance')
        self.dataset = dataset
        self._dump_to_file = not cleanup
        if use_time:
            import datetime
            t = datetime.datetime.now().strftime('_%Y_%m_%d_%H_%M_%S')
        else:
            t = ''
        self._img_ids = sorted(dataset.coco.getImgIds())
        self._current_id = starting_id
        self._results = []
        self._score_thresh = score_thresh
        from ...data.mscoco.utils import try_import_pycocotools
        try_import_pycocotools()
        import pycocotools.mask as cocomask
        self._cocomask = cocomask
        self._filename = osp.abspath(osp.expanduser(save_prefix) + t + '.json')
        if use_ext:
            from pycocotools import coco
            if not hasattr(coco, 'ext'):
                raise AttributeError('external module is not support by the COCO API installed. '
                                     'Consider install NVIDIA MSCOCO API here '
                                     'https://github.com/NVIDIA/cocoapi.git')
            self.dataset.coco.createIndex(use_ext=use_ext)
            self._bbox_result = []
            self._segm_result = []
            self._bbox_filename = osp.abspath(osp.expanduser(save_prefix) + t + '_bbox.json')
            self._segm_filename = osp.abspath(osp.expanduser(save_prefix) + t + '_segm.json')
            if not self._dump_to_file:
                warnings.warn('When using external module, eval json is always dumped.') 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:36,代碼來源:coco_instance.py

示例4: _update

# 需要導入模塊: import pycocotools [as 別名]
# 或者: from pycocotools import coco [as 別名]
def _update(self, annType='bbox'):
        """Use coco to get real scores. """
        if self._use_ext:
            self.dataset.coco.createIndex(use_ext=True)
            if annType == 'bbox':
                pred = self.dataset.coco.loadRes(self._bbox_filename, use_ext=True)
            else:
                pred = self.dataset.coco.loadRes(self._segm_filename, use_ext=True)
        else:
            if self._results is not None and not self._dump_to_file:
                pred = self.dataset.coco.loadRes(self._results)
            else:
                pred = self.dataset.coco.loadRes(self._filename)
        gt = self.dataset.coco
        # lazy import pycocotools
        from ...data.mscoco.utils import try_import_pycocotools
        try_import_pycocotools()
        from pycocotools.cocoeval import COCOeval
        # only NVIDIA MSCOCO API support use_ext
        coco_eval = COCOeval(gt, pred, annType, use_ext=self._use_ext) \
            if self._use_ext else COCOeval(gt, pred, annType)
        coco_eval.evaluate()
        coco_eval.accumulate()
        names, values = [], []
        names.append('~~~~ Summary {} metrics ~~~~\n'.format(annType))
        # catch coco print string, don't want directly print here
        _stdout = sys.stdout
        sys.stdout = io.StringIO()
        coco_eval.summarize()
        coco_summary = sys.stdout.getvalue()
        sys.stdout = _stdout
        values.append(str(coco_summary).strip())
        names.append('~~~~ Mean AP for {} ~~~~\n'.format(annType))
        values.append('{:.1f}'.format(100 * self._get_ap(coco_eval)))
        return names, values 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:37,代碼來源:coco_instance.py

示例5: _encode_mask

# 需要導入模塊: import pycocotools [as 別名]
# 或者: from pycocotools import coco [as 別名]
def _encode_mask(self, mask):
        """Convert mask to coco rle"""
        rle = self._cocomask.encode(np.array(mask[:, :, np.newaxis], order='F'))[0]
        rle['counts'] = rle['counts'].decode('ascii')
        return rle

    # pylint: disable=arguments-differ, unused-argument 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:9,代碼來源:coco_instance.py

示例6: __init__

# 需要導入模塊: import pycocotools [as 別名]
# 或者: from pycocotools import coco [as 別名]
def __init__(self, images_dir, annotation_file, image_shape, keep_aspect_ratio=False):
        
        self.images_dir = images_dir
        self.annotation_file = annotation_file
        self.image_shape = tuple(image_shape)
        self.keep_aspect_ratio = keep_aspect_ratio
        
        self.cocoGt = pycocotools.coco.COCO('annotations/person_keypoints_val2017.json')
        self.catIds = self.cocoGt.getCatIds('person')
        self.imgIds = self.cocoGt.getImgIds(catIds=self.catIds)
        self.transform = torchvision.transforms.Compose([
            torchvision.transforms.ToTensor(),
            torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ]) 
開發者ID:NVIDIA-AI-IOT,項目名稱:trt_pose,代碼行數:16,代碼來源:coco.py

示例7: from_coco

# 需要導入模塊: import pycocotools [as 別名]
# 或者: from pycocotools import coco [as 別名]
def from_coco(DetectionMetrics, true_coco, pred_coco):
        """
        Create detection metrics from two coco files representing the truth and
        predictions.

        Args:
            true_coco (ndsampler.CocoDataset):
            pred_coco (ndsampler.CocoDataset):

        Example:
            >>> # xdoctest: +REQUIRES(module:ndsampler)
            >>> import ndsampler
            >>> true_coco = ndsampler.CocoDataset.demo('shapes')
            >>> pred_coco = true_coco
            >>> self = DetectionMetrics.from_coco(true_coco, pred_coco)
            >>> self.score_voc()
        """
        import kwimage

        classes = true_coco.object_categories()
        self = DetectionMetrics(classes)

        def _coco_to_dets(coco_dset):
            for img in coco_dset.imgs.values():
                gid = img['id']
                imgname = img['file_name']
                aids = coco_dset.gid_to_aids[gid]
                annots = [coco_dset.anns[aid] for aid in aids]
                dets = kwimage.Detections.from_coco_annots(annots, dset=coco_dset)
                yield dets, imgname, gid

        for dets, imgname, gid in _coco_to_dets(true_coco):
            self.add_truth(dets, imgname, gid=gid)

        for dets, imgname, gid in _coco_to_dets(pred_coco):
            self.add_predictions(dets, imgname, gid=gid)

        return self 
開發者ID:Erotemic,項目名稱:netharn,代碼行數:40,代碼來源:detect_metrics.py

示例8: __init__

# 需要導入模塊: import pycocotools [as 別名]
# 或者: from pycocotools import coco [as 別名]
def __init__(self, split,
                 use_crowd=False, return_crowd=False, return_area=False):
        if split == 'train':
            split = split + '2014'
            data_type = 'train2014'
        elif split in ['val', 'minival', 'valminusminival']:
            split = split + '2014'
            data_type = 'val2014'
        else:
            raise ValueError
        ann_file = osp.join(
            self.root_dir, 'annotations/instances_%s.json' % split)

        if not osp.exists(ann_file):
            self.download()

        self._use_crowd = use_crowd
        self._return_crowd = return_crowd
        self._return_area = return_area

        # suppress loading message of annotations
        with open(os.devnull, 'w') as f:
            sys.stdout = f
            self.coco = COCO(ann_file)
            sys.stdout = sys.__stdout__

        self.img_fname = osp.join(
            self.root_dir, data_type, 'COCO_%s_{:012}.jpg' % data_type)

        # set class_names
        cats = self.coco.loadCats(self.coco.getCatIds())
        cat_id_to_class_id = {}
        class_names = []
        for cat in sorted(cats, key=lambda x: x['id']):
            class_id = len(class_names)
            cat_id_to_class_id[cat['id']] = class_id
            class_names.append(cat['name'])
        class_names = np.asarray(class_names)
        class_names.setflags(write=0)
        self.cat_id_to_class_id = cat_id_to_class_id
        self.class_names = class_names

        # filter images without any annotations
        img_ids = []
        for img_id in self.coco.getImgIds():
            ann_ids = self.coco.getAnnIds(img_id)
            if len(ann_ids) >= 1:
                img_ids.append(img_id)
        self.img_ids = img_ids 
開發者ID:wkentaro,項目名稱:chainer-mask-rcnn,代碼行數:51,代碼來源:coco.py

示例9: _to_coco

# 需要導入模塊: import pycocotools [as 別名]
# 或者: from pycocotools import coco [as 別名]
def _to_coco(dmet):
        """
        Convert to a coco representation of truth and predictions
        """
        import ndsampler
        true = ndsampler.CocoDataset()
        pred = ndsampler.CocoDataset()

        for node in dmet.classes:
            # cid = dmet.classes.graph.node[node]['id']
            cid = dmet.classes.index(node)
            supercategory = list(dmet.classes.graph.pred[node])
            if len(supercategory) == 0:
                supercategory = None
            else:
                assert len(supercategory) == 1
                supercategory = supercategory[0]
            true.add_category(node, id=cid, supercategory=supercategory)
            pred.add_category(node, id=cid, supercategory=supercategory)

        for imgname, gid in dmet._imgname_to_gid.items():
            true.add_image(imgname, id=gid)
            pred.add_image(imgname, id=gid)

        idx_to_id = {
            idx: dmet.classes.index(node)
            for idx, node in enumerate(dmet.classes.idx_to_node)
        }

        for gid, pred_dets in dmet.gid_to_pred_dets.items():
            pred_boxes = pred_dets.boxes
            if 'scores' in pred_dets.data:
                pred_scores = pred_dets.scores
            else:
                pred_scores = np.ones(len(pred_dets))
            pred_cids = list(ub.take(idx_to_id, pred_dets.class_idxs))
            pred_xywh = pred_boxes.to_xywh().data.tolist()
            for bbox, cid, score in zip(pred_xywh, pred_cids, pred_scores):
                pred.add_annotation(gid, cid, bbox=bbox, score=score)

        for gid, true_dets in dmet.gid_to_true_dets.items():
            true_boxes = true_dets.boxes
            if 'weights' in true_dets.data:
                true_weights = true_dets.weights
            else:
                true_weights = np.ones(len(true_boxes))
            true_cids = list(ub.take(idx_to_id, true_dets.class_idxs))
            true_xywh = true_boxes.to_xywh().data.tolist()
            for bbox, cid, weight in zip(true_xywh, true_cids, true_weights):
                true.add_annotation(gid, cid, bbox=bbox, weight=weight)

        return pred, true 
開發者ID:Erotemic,項目名稱:netharn,代碼行數:54,代碼來源:detect_metrics.py

示例10: score_coco

# 需要導入模塊: import pycocotools [as 別名]
# 或者: from pycocotools import coco [as 別名]
def score_coco(dmet, verbose=0):
        """
        score using ms-coco method

        Example:
            >>> # xdoctest: +REQUIRES(--pycocotools)
            >>> dmet = DetectionMetrics.demo(
            >>>     nimgs=100, nboxes=(0, 3), n_fp=(0, 1), nclasses=8)
            >>> print(dmet.score_coco()['mAP'])
            0.711016...
        """
        from pycocotools import coco
        from pycocotools import cocoeval
        # The original pycoco-api prints to much, supress it
        import netharn as nh

        pred, true = dmet._to_coco()

        quiet = verbose == 0
        with nh.util.SupressPrint(coco, cocoeval, enabled=quiet):
            cocoGt = true._aspycoco()
            cocoDt = pred._aspycoco()

            for ann in cocoGt.dataset['annotations']:
                w, h = ann['bbox'][-2:]
                ann['ignore'] = ann['weight'] < .5
                ann['area'] = w * h
                ann['iscrowd'] = False

            for ann in cocoDt.dataset['annotations']:
                w, h = ann['bbox'][-2:]
                ann['area'] = w * h

            evaler = cocoeval.COCOeval(cocoGt, cocoDt, iouType='bbox')
            evaler.evaluate()
            evaler.accumulate()
            evaler.summarize()
            coco_ap = evaler.stats[1]
            coco_scores = {
                'mAP': coco_ap,
                'evalar_stats': evaler.stats
            }
        return coco_scores 
開發者ID:Erotemic,項目名稱:netharn,代碼行數:45,代碼來源:detect_metrics.py


注:本文中的pycocotools.coco方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。