當前位置: 首頁>>代碼示例>>Python>>正文


Python eval.COCOEvalCap方法代碼示例

本文整理匯總了Python中pycocoevalcap.eval.COCOEvalCap方法的典型用法代碼示例。如果您正苦於以下問題:Python eval.COCOEvalCap方法的具體用法?Python eval.COCOEvalCap怎麽用?Python eval.COCOEvalCap使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pycocoevalcap.eval的用法示例。


在下文中一共展示了eval.COCOEvalCap方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: language_eval

# 需要導入模塊: from pycocoevalcap import eval [as 別名]
# 或者: from pycocoevalcap.eval import COCOEvalCap [as 別名]
def language_eval(preds, model_id, split):
    import sys
    sys.path.append("coco-caption")
    annFile = 'coco-caption/annotations/captions_val2014.json'
    from pycocotools.coco import COCO
    from pycocoevalcap.eval import COCOEvalCap

    if not os.path.isdir('eval_results'):
        os.mkdir('eval_results')
    cache_path = os.path.join('eval_results/', model_id + '_' + split + '.json')

    coco = COCO(annFile)
    valids = coco.getImgIds()

    # filter results to only those in MSCOCO validation set (will be about a third)
    preds_filt = [p for p in preds if p['image_id'] in valids]
    print('using %d/%d predictions' % (len(preds_filt), len(preds)))
    json.dump(preds_filt, open(cache_path, 'w')) # serialize to temporary json file. Sigh, COCO API...

    cocoRes = coco.loadRes(cache_path)
    cocoEval = COCOEvalCap(coco, cocoRes)
    cocoEval.params['image_id'] = cocoRes.getImgIds()
    cocoEval.evaluate()

    # create output dictionary
    out = {}
    for metric, score in cocoEval.eval.items():
        out[metric] = score

    imgToEval = cocoEval.imgToEval
    for p in preds_filt:
        image_id, caption = p['image_id'], p['caption']
        imgToEval[image_id]['caption'] = caption
    with open(cache_path, 'w') as outfile:
        json.dump({'overall': out, 'imgToEval': imgToEval}, outfile)
    return out 
開發者ID:ltguo19,項目名稱:VSUA-Captioning,代碼行數:38,代碼來源:eval_utils.py

示例2: language_eval

# 需要導入模塊: from pycocoevalcap import eval [as 別名]
# 或者: from pycocoevalcap.eval import COCOEvalCap [as 別名]
def language_eval(dataset, preds, model_id, split):
    import sys
    sys.path.append("coco-caption")
    annFile = 'coco-caption/annotations/captions_val2014.json'
    from pycocotools.coco import COCO
    from pycocoevalcap.eval import COCOEvalCap

    encoder.FLOAT_REPR = lambda o: format(o, '.3f')

    if not os.path.isdir('eval_results'):
        os.mkdir('eval_results')
    cache_path = os.path.join('eval_results/', model_id + '_' + split + '.json')

    coco = COCO(annFile)
    valids = coco.getImgIds()

    # filter results to only those in MSCOCO validation set (will be about a third)
    preds_filt = [p for p in preds if p['image_id'] in valids]
    print('using %d/%d predictions' % (len(preds_filt), len(preds)))
    json.dump(preds_filt, open(cache_path, 'w')) # serialize to temporary json file. Sigh, COCO API...

    cocoRes = coco.loadRes(cache_path)
    cocoEval = COCOEvalCap(coco, cocoRes)
    cocoEval.params['image_id'] = cocoRes.getImgIds()
    cocoEval.evaluate()

    # create output dictionary
    out = {}
    for metric, score in cocoEval.eval.items():
        out[metric] = score

    imgToEval = cocoEval.imgToEval
    for p in preds_filt:
        image_id, caption = p['image_id'], p['caption']
        imgToEval[image_id]['caption'] = caption
    with open(cache_path, 'w') as outfile:
        json.dump({'overall': out, 'imgToEval': imgToEval}, outfile)

    return out 
開發者ID:jiasenlu,項目名稱:NeuralBabyTalk,代碼行數:41,代碼來源:eval_utils.py

示例3: score_generation

# 需要導入模塊: from pycocoevalcap import eval [as 別名]
# 或者: from pycocoevalcap.eval import COCOEvalCap [as 別名]
def score_generation(gt_filename=None, generation_result=None):

  coco = COCO(gt_filename)
  generation_coco = coco.loadRes(generation_result)
  coco_evaluator = COCOEvalCap(coco, generation_coco, 'noc_test_freq')
  coco_evaluator.evaluate() 
開發者ID:jiasenlu,項目名稱:NeuralBabyTalk,代碼行數:8,代碼來源:coco_eval.py

示例4: main

# 需要導入模塊: from pycocoevalcap import eval [as 別名]
# 或者: from pycocoevalcap.eval import COCOEvalCap [as 別名]
def main(reference_caption_file: str, system_caption_file: str):
    coco = COCO(reference_caption_file)
    coco_system_captions = coco.loadRes(system_caption_file)
    coco_eval = COCOEvalCap(coco, coco_system_captions)
    coco_eval.params['image_id'] = coco_system_captions.getImgIds()

    coco_eval.evaluate()

    print('\nScores:')
    print('=======')
    for metric, score in coco_eval.eval.items():
        print('{}: {:.3f}'.format(metric, score)) 
開發者ID:krasserm,項目名稱:fairseq-image-captioning,代碼行數:14,代碼來源:score.py

示例5: eval_coco

# 需要導入模塊: from pycocoevalcap import eval [as 別名]
# 或者: from pycocoevalcap.eval import COCOEvalCap [as 別名]
def eval_coco(annFile, resFile):

    coco = COCO(annFile)
    cocoRes = coco.loadRes(resFile)
    cocoEval = COCOEvalCap(coco, cocoRes)
    cocoEval.evaluate()

    Bleu_4 = cocoEval.eval['Bleu_4']
    METEOR = cocoEval.eval['METEOR']
    ROUGE_L = cocoEval.eval['ROUGE_L']
    CIDEr = cocoEval.eval['CIDEr']
    total = Bleu_4 + METEOR + ROUGE_L + CIDEr
    score = {'Bleu_4': Bleu_4, 'METEOR': METEOR, 'ROUGE_L': ROUGE_L, 'CIDEr': CIDEr, 'total': total}

    return score 
開發者ID:aistairc,項目名稱:seq2seq_temporal_attention,代碼行數:17,代碼來源:eval_coco.py

示例6: run

# 需要導入模塊: from pycocoevalcap import eval [as 別名]
# 或者: from pycocoevalcap.eval import COCOEvalCap [as 別名]
def run(inp):
  out = FLAGS.job_dir + '/val_%s.json' % inp
  if not os.path.exists(out):
    with open(COCO_PATH + '/annotations/captions_val2014.json') as g:
      caption_data = json.load(g)
      name_to_id = [(x['file_name'], x['id']) for x in caption_data['images']]
      name_to_id = dict(name_to_id)

    ret = []
    with tf.Graph().as_default(), tf.Session() as sess:
      example = tf.placeholder(tf.string, [])
      name_op, class_op, _ = parse_image(example)
      infer = Infer(job_dir='%s/model.ckpt-%s' % (FLAGS.job_dir, inp))
      for i in tf.io.tf_record_iterator('data/image_val.tfrec'):
        name, classes = sess.run([name_op, class_op], feed_dict={example: i})
        sentences = infer.infer(classes[::-1])
        cur = {}
        cur['image_id'] = name_to_id[name]
        cur['caption'] = sentences[0][0]
        ret.append(cur)
    with open(out, 'w') as g:
      json.dump(ret, g)

  coco = COCO(COCO_PATH + '/annotations/captions_val2014.json')
  cocoRes = coco.loadRes(out)
  # create cocoEval object by taking coco and cocoRes
  cocoEval = COCOEvalCap(coco, cocoRes)
  # evaluate on a subset of images by setting
  # cocoEval.params['image_id'] = cocoRes.getImgIds()
  # please remove this line when evaluating the full validation set
  cocoEval.params['image_id'] = cocoRes.getImgIds()
  # evaluate results
  cocoEval.evaluate()
  return (inp, cocoEval.eval['CIDEr'], cocoEval.eval['METEOR'],
          cocoEval.eval['Bleu_4'], cocoEval.eval['Bleu_3'],
          cocoEval.eval['Bleu_2']) 
開發者ID:fengyang0317,項目名稱:unsupervised_captioning,代碼行數:38,代碼來源:eval_obj2sen.py

示例7: run

# 需要導入模塊: from pycocoevalcap import eval [as 別名]
# 或者: from pycocoevalcap.eval import COCOEvalCap [as 別名]
def run(inp):
  if no_gpu:
    return
  out = FLAGS.job_dir + '/val_%s.json' % inp
  if not os.path.exists(out):
    with open(COCO_PATH + '/annotations/captions_val2014.json') as g:
      caption_data = json.load(g)
      name_to_id = [(x['file_name'], x['id']) for x in caption_data['images']]
      name_to_id = dict(name_to_id)

    ret = []
    with tf.Graph().as_default():
      infer = Infer(job_dir='%s/model.ckpt-%s' % (FLAGS.job_dir, inp))
      with open('data/coco_val.txt', 'r') as g:
        for name in g:
          name = name.strip()
          sentences = infer.infer(name)
          cur = {}
          cur['image_id'] = name_to_id[name]
          cur['caption'] = sentences[0][0]
          ret.append(cur)
    with open(out, 'w') as g:
      json.dump(ret, g)

  coco = COCO(COCO_PATH + '/annotations/captions_val2014.json')
  cocoRes = coco.loadRes(out)
  # create cocoEval object by taking coco and cocoRes
  cocoEval = COCOEvalCap(coco, cocoRes)
  # evaluate on a subset of images by setting
  # cocoEval.params['image_id'] = cocoRes.getImgIds()
  # please remove this line when evaluating the full validation set
  cocoEval.params['image_id'] = cocoRes.getImgIds()
  # evaluate results
  cocoEval.evaluate()
  return (inp, cocoEval.eval['CIDEr'], cocoEval.eval['METEOR'],
          cocoEval.eval['Bleu_4'], cocoEval.eval['Bleu_3'],
          cocoEval.eval['Bleu_2']) 
開發者ID:fengyang0317,項目名稱:unsupervised_captioning,代碼行數:39,代碼來源:eval_all.py

示例8: eval

# 需要導入模塊: from pycocoevalcap import eval [as 別名]
# 或者: from pycocoevalcap.eval import COCOEvalCap [as 別名]
def eval(self, captions, checkpoint_path, score_metric='CIDEr'):
        # TODO: Make strings variables
        captions_path = checkpoint_path + "-val-captions.json"
        with open(captions_path, 'w') as f:
            json.dump(captions, f)
        cocoRes = self.coco.loadRes(captions_path)
        cocoEval = COCOEvalCap(self.coco, cocoRes)
        cocoEval.evaluate()
        json.dump(cocoEval.evalImgs, open(checkpoint_path + "-val-metrics-imgs.json", 'w'))
        json.dump(cocoEval.eval,     open(checkpoint_path + "-val-metrics-overall.json", 'w'))

        print(cocoEval.eval.items())
        return cocoEval.eval[score_metric] 
開發者ID:salaniz,項目名稱:pytorch-gve-lrcn,代碼行數:15,代碼來源:coco_dataset.py

示例9: language_eval

# 需要導入模塊: from pycocoevalcap import eval [as 別名]
# 或者: from pycocoevalcap.eval import COCOEvalCap [as 別名]
def language_eval(dataset, preds, model_id, split):
    import sys
    sys.path.append("coco-caption")
    if 'coco' in dataset:
        annFile = 'coco-caption/annotations/captions_val2014.json'
    elif 'flickr30k' in dataset or 'f30k' in dataset:
        annFile = 'coco-caption/f30k_captions4eval.json'
    from pycocotools.coco import COCO
    from pycocoevalcap.eval import COCOEvalCap

    # encoder.FLOAT_REPR = lambda o: format(o, '.3f')

    if not os.path.isdir('eval_results'):
        os.mkdir('eval_results')
    cache_path = os.path.join('eval_results/', '.cache_'+ model_id + '_' + split + '.json')

    coco = COCO(annFile)
    valids = coco.getImgIds()

    # filter results to only those in MSCOCO validation set (will be about a third)
    preds_filt = [p for p in preds if p['image_id'] in valids]
    print('using %d/%d predictions' % (len(preds_filt), len(preds)))
    json.dump(preds_filt, open(cache_path, 'w')) # serialize to temporary json file. Sigh, COCO API...

    cocoRes = coco.loadRes(cache_path)
    cocoEval = COCOEvalCap(coco, cocoRes)
    cocoEval.params['image_id'] = cocoRes.getImgIds()
    cocoEval.evaluate()

    # create output dictionary
    out = {}
    for metric, score in cocoEval.eval.items():
        out[metric] = score

    imgToEval = cocoEval.imgToEval
    for p in preds_filt:
        image_id, caption = p['image_id'], p['caption']
        imgToEval[image_id]['caption'] = caption
    
    out['bad_count_rate'] = sum([count_bad(_['caption']) for _ in preds_filt]) / float(len(preds_filt))
    outfile_path = os.path.join('eval_results/', model_id + '_' + split + '.json')
    with open(outfile_path, 'w') as outfile:
        json.dump({'overall': out, 'imgToEval': imgToEval}, outfile)

    return out 
開發者ID:husthuaan,項目名稱:AAT,代碼行數:47,代碼來源:eval_utils.py

示例10: language_eval

# 需要導入模塊: from pycocoevalcap import eval [as 別名]
# 或者: from pycocoevalcap.eval import COCOEvalCap [as 別名]
def language_eval(dataset, preds, model_id, split, opt):
    import sys
    sys.path.append("tools/coco-caption")
    if dataset == 'coco':
        annFile = 'tools/coco-caption/annotations/captions_val2014.json'
    elif dataset == 'flickr30k':
        annFile = 'tools/coco-caption/annotations/caption_flickr30k.json'

    from pycocotools.coco import COCO
    from pycocoevalcap.eval import COCOEvalCap

    if not os.path.isdir('eval_results'):
        os.mkdir('eval_results')

    cache_path = os.path.join('eval_results/', model_id + '_' + split + '.json')
    coco = COCO(annFile)
    valids = coco.getImgIds()

    # filter results to only those in MSCOCO validation set (will be about a third)
    preds_filt = [p for p in preds if p['image_id'] in valids]
    print('using %d/%d predictions' % (len(preds_filt), len(preds)))
    json.dump(preds_filt, open(cache_path, 'w')) # serialize to temporary json file. Sigh, COCO API...

    cocoRes = coco.loadRes(cache_path)
    cocoEval = COCOEvalCap(coco, cocoRes, 'corpus')
    cocoEval.params['image_id'] = cocoRes.getImgIds()
    cocoEval.evaluate()

    # create output dictionary
    out = {}
    for metric, score in cocoEval.eval.items():
        out[metric] = score
    imgToEval = cocoEval.imgToEval

    for p in preds_filt:
        image_id, caption = p['image_id'], p['caption']
        imgToEval[image_id]['caption'] = caption

    with open(cache_path, 'w') as outfile:
        json.dump({'overall': out, 'imgToEval': imgToEval}, outfile)

    return out 
開發者ID:jiasenlu,項目名稱:NeuralBabyTalk,代碼行數:44,代碼來源:utils.py

示例11: language_eval

# 需要導入模塊: from pycocoevalcap import eval [as 別名]
# 或者: from pycocoevalcap.eval import COCOEvalCap [as 別名]
def language_eval(dataset, preds, model_id, split):
    import sys
    sys.path.append("coco-caption")
    if dataset == 'coco':
        annFile = 'coco-caption/annotations/captions_val2014.json'
    elif dataset == 'flickr30k':
        annFile = 'coco-caption/annotations/caption_flickr30k.json'
    elif dataset == 'cc':
        annFile = 'coco-caption/annotations/caption_cc_val.json'

    from pycocotools.coco import COCO
    from pycocoevalcap.eval import COCOEvalCap

    if not os.path.isdir('eval_results'):
        os.mkdir('eval_results')

    cache_path = os.path.join('eval_results/', model_id + '_' + split + '.json')
    coco = COCO(annFile)
    valids = coco.getImgIds()
    # valids = json.load(open('/mnt/dat/CC/annotations/cc_valid_jpgs.json'))
    # valids = {int(i[:-4]):int(i[:-4]) for i,j in valids.items()}

    # filter results to only those in MSCOCO validation set (will be about a third)
    preds_filt = [p for p in preds if p['image_id'] in valids]
    print('using %d/%d predictions' % (len(preds_filt), len(preds)))
    # print(preds_filt)
    json.dump(preds_filt, open(cache_path, 'w')) # serialize to temporary json file. Sigh, COCO API...

    cocoRes = coco.loadRes(cache_path)
    cocoEval = COCOEvalCap(coco, cocoRes, 'corpus')
    cocoEval.params['image_id'] = cocoRes.getImgIds()
    cocoEval.evaluate()

    # create output dictionary
    out = {}
    for metric, score in cocoEval.eval.items():
        out[metric] = score
    imgToEval = cocoEval.imgToEval

    for p in preds_filt:
        image_id, caption = p['image_id'], p['caption']
        imgToEval[image_id]['caption'] = caption

    with open(cache_path, 'w') as outfile:
        json.dump({'overall': out, 'imgToEval': imgToEval}, outfile)

    return out 
開發者ID:LuoweiZhou,項目名稱:VLP,代碼行數:49,代碼來源:lang_utils.py

示例12: eval_oracle

# 需要導入模塊: from pycocoevalcap import eval [as 別名]
# 或者: from pycocoevalcap.eval import COCOEvalCap [as 別名]
def eval_oracle(preds_n, model_id, split):
    cache_path = os.path.join('eval_results/', model_id + '_' + split + '_n.json')

    coco = COCO(annFile)
    valids = coco.getImgIds()

    capsById = {}
    for d in preds_n:
        capsById[d['image_id']] = capsById.get(d['image_id'], []) + [d]
    
    for i in range(len(capsById[capsById.keys()[0]])):
        preds = [_[i] for _ in capsById.values()]

        json.dump(preds, open(cache_path, 'w')) # serialize to temporary json file. Sigh, COCO API...

        cocoRes = coco.loadRes(cache_path)
        cocoEval = COCOEvalCap(coco, cocoRes)
        cocoEval.params['image_id'] = cocoRes.getImgIds()
        cocoEval.evaluate()

        imgToEval = cocoEval.imgToEval
        for img_id in capsById.keys():
            tmp = imgToEval[img_id]
            for k in tmp['SPICE'].keys():
                if k != 'All':
                    tmp['SPICE_'+k] = tmp['SPICE'][k]['f']
                    if tmp['SPICE_'+k] != tmp['SPICE_'+k]: # nan
                        tmp['SPICE_'+k] = -100
            tmp['SPICE'] = tmp['SPICE']['All']['f']
            if tmp['SPICE'] != tmp['SPICE']: tmp['SPICE'] = -100
            capsById[img_id][i]['scores'] = imgToEval[img_id]

    out = {'overall': {}, 'ImgToEval': {}}
    for img_id in capsById.keys():
        out['ImgToEval'][img_id] = {}
        for metric in capsById[img_id][0]['scores'].keys():
            out['ImgToEval'][img_id][metric] = max([_['scores'][metric] for _ in capsById[img_id]])
    for metric in out['ImgToEval'].values()[0].keys():
        tmp = np.array([_[metric] for _ in out['ImgToEval'].values()])
        tmp = tmp[tmp!=-100]
        out['overall']['oracle_'+metric] = tmp.mean()
        
    return out 
開發者ID:ruotianluo,項目名稱:GoogleConceptualCaptioning,代碼行數:45,代碼來源:eval_multi.py

示例13: eval_oracle

# 需要導入模塊: from pycocoevalcap import eval [as 別名]
# 或者: from pycocoevalcap.eval import COCOEvalCap [as 別名]
def eval_oracle(dataset, preds_n, model_id, split):
    cache_path = os.path.join('eval_results/', model_id + '_' + split + '_n.json')

    coco = getCOCO(dataset)
    valids = coco.getImgIds()

    capsById = {}
    for d in preds_n:
        capsById[d['image_id']] = capsById.get(d['image_id'], []) + [d]
    
    sample_n = capsById[list(capsById.keys())[0]]
    for i in range(len(capsById[list(capsById.keys())[0]])):
        preds = [_[i] for _ in capsById.values()]

        json.dump(preds, open(cache_path, 'w')) # serialize to temporary json file. Sigh, COCO API...

        cocoRes = coco.loadRes(cache_path)
        cocoEval = COCOEvalCap(coco, cocoRes)
        cocoEval.params['image_id'] = cocoRes.getImgIds()
        cocoEval.evaluate()

        imgToEval = cocoEval.imgToEval
        for img_id in capsById.keys():
            tmp = imgToEval[img_id]
            for k in tmp['SPICE'].keys():
                if k != 'All':
                    tmp['SPICE_'+k] = tmp['SPICE'][k]['f']
                    if tmp['SPICE_'+k] != tmp['SPICE_'+k]: # nan
                        tmp['SPICE_'+k] = -100
            tmp['SPICE'] = tmp['SPICE']['All']['f']
            if tmp['SPICE'] != tmp['SPICE']: tmp['SPICE'] = -100
            capsById[img_id][i]['scores'] = imgToEval[img_id]

    out = {'overall': {}, 'ImgToEval': {}}
    for img_id in capsById.keys():
        out['ImgToEval'][img_id] = {}
        for metric in capsById[img_id][0]['scores'].keys():
            if metric == 'image_id': continue
            out['ImgToEval'][img_id]['oracle_'+metric] = max([_['scores'][metric] for _ in capsById[img_id]])
            out['ImgToEval'][img_id]['avg_'+metric] = sum([_['scores'][metric] for _ in capsById[img_id]]) / len(capsById[img_id])
        out['ImgToEval'][img_id]['captions'] = capsById[img_id]
    for metric in list(out['ImgToEval'].values())[0].keys():
        if metric == 'captions':
            continue
        tmp = np.array([_[metric] for _ in out['ImgToEval'].values()])
        tmp = tmp[tmp!=-100]
        out['overall'][metric] = tmp.mean()
        
    return out 
開發者ID:ruotianluo,項目名稱:self-critical.pytorch,代碼行數:51,代碼來源:eval_multi.py

示例14: main

# 需要導入模塊: from pycocoevalcap import eval [as 別名]
# 或者: from pycocoevalcap.eval import COCOEvalCap [as 別名]
def main(_):
  infer = Infer()

  with open(COCO_PATH + '/annotations/captions_val2014.json') as g:
    caption_data = json.load(g)
  name_to_id = [(x['file_name'], x['id']) for x in caption_data['images']]
  name_to_id = dict(name_to_id)

  ret = []
  with tf.Graph().as_default(), tf.Session() as sess:
    example = tf.placeholder(tf.string, [])
    name_op, class_op, _ = parse_image(example)
    for i in tqdm(tf.io.tf_record_iterator('data/image_test.tfrec'),
                  total=5000):
      name, classes = sess.run([name_op, class_op], feed_dict={example: i})
      sentences = infer.infer(classes[::-1])
      cur = {}
      cur['image_id'] = name_to_id[name]
      cur['caption'] = sentences[0][0]
      ret.append(cur)

  if os.path.isdir(FLAGS.job_dir):
    out_dir = FLAGS.job_dir
  else:
    out_dir = os.path.split(FLAGS.job_dir)[0]
  out = out_dir + '/test.json'
  with open(out, 'w') as g:
    json.dump(ret, g)

  coco = COCO(COCO_PATH + '/annotations/captions_val2014.json')
  cocoRes = coco.loadRes(out)

  # create cocoEval object by taking coco and cocoRes
  cocoEval = COCOEvalCap(coco, cocoRes)

  # evaluate on a subset of images by setting
  # cocoEval.params['image_id'] = cocoRes.getImgIds()
  # please remove this line when evaluating the full validation set
  cocoEval.params['image_id'] = cocoRes.getImgIds()

  # evaluate results
  cocoEval.evaluate()

  # print output evaluation scores
  for metric, score in cocoEval.eval.items():
    print('%s: %.3f' % (metric, score)) 
開發者ID:fengyang0317,項目名稱:unsupervised_captioning,代碼行數:48,代碼來源:test_obj2sen.py

示例15: main

# 需要導入模塊: from pycocoevalcap import eval [as 別名]
# 或者: from pycocoevalcap.eval import COCOEvalCap [as 別名]
def main(_):
  infer = Infer()

  with open(COCO_PATH + '/annotations/captions_val2014.json') as g:
    caption_data = json.load(g)
  name_to_id = [(x['file_name'], x['id']) for x in caption_data['images']]
  name_to_id = dict(name_to_id)

  with open('data/coco_test.txt', 'r') as g:
    ret = []
    for name in tqdm(g, total=5000):
      name = name.strip()
      sentences = infer.infer(name)
      cur = {}
      cur['image_id'] = name_to_id[name]
      cur['caption'] = sentences[0][0]
      ret.append(cur)
      if FLAGS.vis:
        im = cv2.imread(FLAGS.data_dir + name)
        print(sentences[0][0])
        cv2.imshow('a', im)
        k = cv2.waitKey()
        if k & 0xff == 27:
          return

  if os.path.isdir(FLAGS.job_dir):
    out_dir = FLAGS.job_dir
  else:
    out_dir = os.path.split(FLAGS.job_dir)[0]
  out = out_dir + '/test.json'
  with open(out, 'w') as g:
    json.dump(ret, g)

  coco = COCO(COCO_PATH + '/annotations/captions_val2014.json')
  cocoRes = coco.loadRes(out)

  # create cocoEval object by taking coco and cocoRes
  cocoEval = COCOEvalCap(coco, cocoRes)

  # evaluate on a subset of images by setting
  # cocoEval.params['image_id'] = cocoRes.getImgIds()
  # please remove this line when evaluating the full validation set
  cocoEval.params['image_id'] = cocoRes.getImgIds()

  # evaluate results
  cocoEval.evaluate()

  # print output evaluation scores
  for metric, score in cocoEval.eval.items():
    print('%s: %.3f' % (metric, score)) 
開發者ID:fengyang0317,項目名稱:unsupervised_captioning,代碼行數:52,代碼來源:test_model.py


注:本文中的pycocoevalcap.eval.COCOEvalCap方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。