當前位置: 首頁>>代碼示例>>Python>>正文


Python shortcuts.buildNetwork方法代碼示例

本文整理匯總了Python中pybrain.tools.shortcuts.buildNetwork方法的典型用法代碼示例。如果您正苦於以下問題:Python shortcuts.buildNetwork方法的具體用法?Python shortcuts.buildNetwork怎麽用?Python shortcuts.buildNetwork使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pybrain.tools.shortcuts的用法示例。


在下文中一共展示了shortcuts.buildNetwork方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from pybrain.tools import shortcuts [as 別名]
# 或者: from pybrain.tools.shortcuts import buildNetwork [as 別名]
def __init__(self, **kwargs):

        self.max_depth = 0
        self.stats = {}

        self.calculation_time = float(kwargs.get('time', 1))
        self.max_moves = int(kwargs.get('max_moves', Board.BOARD_SIZE_SQ))

        # Exploration constant, increase for more exploratory moves,
        # decrease to prefer moves with known higher win rates.
        self.C = float(kwargs.get('C', 1.4))

        self.features_num = Board.BOARD_SIZE_SQ * 3 + 2
        self.hidden_neurons_num = self.features_num * 2
        self.net = buildNetwork(self.features_num, self.hidden_neurons_num, 2, bias=True, outclass=SigmoidLayer)
        self.trainer = BackpropTrainer(self.net)

        self.total_sim = 0
        self.observation = [] 
開發者ID:splendor-kill,項目名稱:ml-five,代碼行數:21,代碼來源:mcts.py

示例2: __init__

# 需要導入模塊: from pybrain.tools import shortcuts [as 別名]
# 或者: from pybrain.tools.shortcuts import buildNetwork [as 別名]
def __init__(self, features_num, hidden_neurons_num):
        super().__init__()
        self.is_learning = True

        self.features_num = features_num
#         self.net = buildNetwork(features_num, hidden_neurons_num, 1, bias = True)
#         self.net = buildNetwork(features_num, hidden_neurons_num, hidden_neurons_num, 1, bias = True)
#         self.net = ConvolutionalBoardNetwork(Board.BOARD_SIZE, 5, 3)
#         self.trainer = BackpropTrainer(self.net)
        
        self.net_attack = buildNetwork(features_num, hidden_neurons_num, hidden_neurons_num, 1, bias = True)
        self.net_defence = buildNetwork(features_num, hidden_neurons_num, hidden_neurons_num, 1, bias = True)
        self.trainer_attack = BackpropTrainer(self.net_attack)
        self.trainer_defence = BackpropTrainer(self.net_defence)
                
        self.gamma = 0.9
        self.errors = []
        self.buf = np.zeros(200)
        self.buf_index = 0
        self.setup() 
開發者ID:splendor-kill,項目名稱:ml-five,代碼行數:22,代碼來源:strategy_ann.py

示例3: get_nn

# 需要導入模塊: from pybrain.tools import shortcuts [as 別名]
# 或者: from pybrain.tools.shortcuts import buildNetwork [as 別名]
def get_nn(self, train=True):

        train_data, results_data = self.get_train_and_test_data()
        DS = self.create_DS(train_data)

        try:
            import arac  # noqa
            print("ARAC Available, using fast mode network builder!")
            FNN = buildNetwork(DS.indim, self.hiddenneurons, DS.outdim, bias=self.bias, recurrent=self.recurrent,
                               fast=True)
        except ImportError:
            FNN = buildNetwork(DS.indim, self.hiddenneurons, DS.outdim, bias=self.bias, recurrent=self.recurrent)
        FNN.randomize()

        TRAINER = BackpropTrainer(FNN, dataset=DS, learningrate=self.learningrate,
                                  momentum=self.momentum, verbose=False, weightdecay=self.weightdecay)

        if train:
            for i in range(self.epochs):
                TRAINER.train()

        self.nn = FNN
        return FNN 
開發者ID:owocki,項目名稱:pytrader,代碼行數:25,代碼來源:models.py

示例4: fitANN

# 需要導入模塊: from pybrain.tools import shortcuts [as 別名]
# 或者: from pybrain.tools.shortcuts import buildNetwork [as 別名]
def fitANN(data):
    '''
        Build a neural network regressor
    '''
    # determine the number of inputs and outputs
    inputs_cnt = data['input'].shape[1]
    target_cnt = data['target'].shape[1]

    # create the regressor object
    ann = pb.buildNetwork(inputs_cnt, 
        inputs_cnt * 3,
        target_cnt,
        hiddenclass=st.TanhLayer,
        outclass=st.LinearLayer,
        bias=True
    )

    # create the trainer object
    trainer = tr.BackpropTrainer(ann, data, 
        verbose=True, batchlearning=False)

    # and train the network
    trainer.trainUntilConvergence(maxEpochs=50, verbose=True, 
        continueEpochs=2, validationProportion=0.25)

    # and return the regressor
    return ann

# the file name of the dataset 
開發者ID:drabastomek,項目名稱:practicalDataAnalysisCookbook,代碼行數:31,代碼來源:regression_ann.py

示例5: fitANN

# 需要導入模塊: from pybrain.tools import shortcuts [as 別名]
# 或者: from pybrain.tools.shortcuts import buildNetwork [as 別名]
def fitANN(data):
    '''
        Build a neural network classifier
    '''
    # determine the number of inputs and outputs
    inputs_cnt = data['input'].shape[1]
    target_cnt = data['target'].shape[1]

    # create the classifier object
    ann = pb.buildNetwork(inputs_cnt, 
        inputs_cnt * 2,  
        inputs_cnt / 2,
        target_cnt,
        hiddenclass=st.SigmoidLayer,
        outclass=st.SoftmaxLayer,
        bias=True
    )

    # create the trainer object
    trainer = tr.BackpropTrainer(ann, data, 
        verbose=True, batchlearning=False)

    # and train the network
    trainer.trainUntilConvergence(maxEpochs=50, verbose=True, 
        continueEpochs=3, validationProportion=0.25)

    # and return the classifier
    return ann

# the file name of the dataset 
開發者ID:drabastomek,項目名稱:practicalDataAnalysisCookbook,代碼行數:32,代碼來源:classification_ann_alternative.py

示例6: fitANN

# 需要導入模塊: from pybrain.tools import shortcuts [as 別名]
# 或者: from pybrain.tools.shortcuts import buildNetwork [as 別名]
def fitANN(data):
    '''
        Build a neural network classifier
    '''
    # determine the number of inputs and outputs
    inputs_cnt = data['input'].shape[1]
    target_cnt = data['target'].shape[1]

    # create the classifier object
    ann = pb.buildNetwork(inputs_cnt, 
        inputs_cnt * 2, 
        target_cnt,
        hiddenclass=st.TanhLayer,
        outclass=st.SoftmaxLayer,
        bias=True
    )

    # create the trainer object
    trainer = tr.BackpropTrainer(ann, data, 
        verbose=True, batchlearning=False)

    # and train the network
    trainer.trainUntilConvergence(maxEpochs=50, verbose=True, 
        continueEpochs=3, validationProportion=0.25)

    # and return the classifier
    return ann

# the file name of the dataset 
開發者ID:drabastomek,項目名稱:practicalDataAnalysisCookbook,代碼行數:31,代碼來源:classification_ann.py

示例7: build_network

# 需要導入模塊: from pybrain.tools import shortcuts [as 別名]
# 或者: from pybrain.tools.shortcuts import buildNetwork [as 別名]
def build_network(self, dataset, new=True, **kwargs):
        """
        Builds a neural network using the dataset provided.
        Expected keyword args:
            - 'hidden_layers'
            - 'prediction_window'
            - 'learning_rate'
            - 'momentum'
        """
        self.hidden_layers = kwargs.get('hidden_layers', 3)
        self.prediction_window = kwargs.get('prediction_window', 1)
        self.learning_rate = kwargs.get('learning_rate', 0.1)
        self.momentum = kwargs.get('momentum', 0.01)
        if not new:
            self.network.sorted = False
            self.network.sortModules()
            if self.network_dataset_type == SUPERVISED_DATASET:
                self.ready_supervised_dataset(dataset)
            else: raise InvalidNetworkDatasetType()
        else:
            if self.network_type == FEED_FORWARD_NETWORK:
                self.network = buildNetwork(len(self.train_data), self.hidden_layers, 1)
            else: raise InvalidNetworkType()
            if self.network_dataset_type == SUPERVISED_DATASET:
                self.ready_supervised_dataset(dataset)
            else: raise InvalidNetworkDatasetType()
            if self.trainer_type == BACKPROP_TRAINER:
                self.trainer = BackpropTrainer(self.network,
                                               learningrate=self.learning_rate,
                                               momentum=self.momentum,
                                               verbose=True)
                self.trainer.setData(self.network_dataset)
            else: raise InvalidTrainerType() 
開發者ID:edouardpoitras,項目名稱:NowTrade,代碼行數:35,代碼來源:neural_network.py

示例8: train

# 需要導入模塊: from pybrain.tools import shortcuts [as 別名]
# 或者: from pybrain.tools.shortcuts import buildNetwork [as 別名]
def train(context, trainX, trainY):
    ds = SequentialDataSet(4, 1)
    for dataX, dataY in zip(trainX, trainY):
        ds.addSample(dataX, dataY)
    net = buildNetwork(4, 1, 1, hiddenclass=LSTMLayer, outputbias=False, recurrent=True)
    trainer = RPropMinusTrainer(net, dataset=ds)
    EPOCHS_PER_CYCLE = 5
    CYCLES = 5
    for i in range(CYCLES):
        trainer.trainEpochs(EPOCHS_PER_CYCLE)
    return net, trainer.testOnData()


# 更新數據集data 
開發者ID:zhengwsh,項目名稱:InplusTrader_Linux,代碼行數:16,代碼來源:nn.py

示例9: build_network

# 需要導入模塊: from pybrain.tools import shortcuts [as 別名]
# 或者: from pybrain.tools.shortcuts import buildNetwork [as 別名]
def build_network():

    # get iris data
    iris = datasets.load_iris()
    d,t = iris.data, iris.target

    # build dataset
    ds = _get_classification_dataset()
    for i in range(len(d)):
        ds.addSample(d[i],t[i])

    print "Dataset input: {}".format(ds['input'])
    print "Dataset output: {}".format(ds['target'])
    print "Dataset input length: {}".format(len(ds['input']))
    print "Dataset output length: {}".format(len(ds['target']))
    print "Dataset length: {}".format(len(ds))
    print "Dataset input|output dimensions are {}|{}".format(ds.indim, ds.outdim)

    # split dataset
    train_data,test_data = _split_with_proportion(ds, 0.70)
    
    print "Train Data length: {}".format(len(train_data))
    print "Test Data length: {}".format(len(test_data))

    # encode with one output neuron per class
    train_data._convertToOneOfMany()
    test_data._convertToOneOfMany()

    print "Train Data input|output dimensions are {}|{}".format(train_data.indim, train_data.outdim)
    print "Test Data input|output dimensions are {}|{}".format(test_data.indim, test_data.outdim)

    # build network
    network = buildNetwork(INPUT,HIDDEN,CLASSES,outclass=SoftmaxLayer)

    # train network
    trainer = BackpropTrainer(network,dataset=train_data,momentum=0.1,verbose=True,weightdecay=0.01)
    trainer.trainOnDataset(train_data, 500)

    print "Total epochs: {}".format(trainer.totalepochs)

    # test network
    output = network.activateOnDataset(test_data).argmax(axis=1)
    
    print "Percent error: {}".format(percentError(output, test_data['class']))

    # return network
    return network

# classify data against neural network 
開發者ID:rdmilligan,項目名稱:SaltwashAR,代碼行數:51,代碼來源:neuralnetwork.py

示例10: build_network

# 需要導入模塊: from pybrain.tools import shortcuts [as 別名]
# 或者: from pybrain.tools.shortcuts import buildNetwork [as 別名]
def build_network(inputs,targets):

    # build dataset
    ds = _get_classification_dataset()
    for i in range(len(inputs)):
        ds.addSample(inputs[i],targets[i])

    print "Dataset input: {}".format(ds['input'])
    print "Dataset output: {}".format(ds['target'])
    print "Dataset input length: {}".format(len(ds['input']))
    print "Dataset output length: {}".format(len(ds['target']))
    print "Dataset length: {}".format(len(ds))
    print "Dataset input|output dimensions are {}|{}".format(ds.indim, ds.outdim)

    # split dataset
    train_data,test_data = _split_with_proportion(ds, 0.70)
    
    print "Train Data length: {}".format(len(train_data))
    print "Test Data length: {}".format(len(test_data))

    # encode with one output neuron per class
    train_data._convertToOneOfMany()
    test_data._convertToOneOfMany()

    print "Train Data input|output dimensions are {}|{}".format(train_data.indim, train_data.outdim)
    print "Test Data input|output dimensions are {}|{}".format(test_data.indim, test_data.outdim)

    # build network
    network = buildNetwork(INPUT,HIDDEN,CLASSES,outclass=SoftmaxLayer)

    # train network
    trainer = BackpropTrainer(network,dataset=train_data,momentum=0.1,verbose=True,weightdecay=0.01)
    trainer.trainUntilConvergence(dataset=train_data,maxEpochs=500)

    print "Total epochs: {}".format(trainer.totalepochs)

    # test network
    output = network.activateOnDataset(test_data).argmax(axis=1)
    
    print "Percent error: {}".format(percentError(output, test_data['class']))

    # return network
    return network

# classify input against neural network 
開發者ID:rdmilligan,項目名稱:SaltwashAR,代碼行數:47,代碼來源:neuralnetwork.py


注:本文中的pybrain.tools.shortcuts.buildNetwork方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。