當前位置: 首頁>>代碼示例>>Python>>正文


Python pyarrow.uint32方法代碼示例

本文整理匯總了Python中pyarrow.uint32方法的典型用法代碼示例。如果您正苦於以下問題:Python pyarrow.uint32方法的具體用法?Python pyarrow.uint32怎麽用?Python pyarrow.uint32使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pyarrow的用法示例。


在下文中一共展示了pyarrow.uint32方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _get_numeric_byte_size_test_cases

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import uint32 [as 別名]
def _get_numeric_byte_size_test_cases():
  result = []
  for array_type, sizeof in [
      (pa.int8(), 1),
      (pa.uint8(), 1),
      (pa.int16(), 2),
      (pa.uint16(), 2),
      (pa.int32(), 4),
      (pa.uint32(), 4),
      (pa.int64(), 8),
      (pa.uint64(), 8),
      (pa.float32(), 4),
      (pa.float64(), 8),
  ]:
    result.append(
        dict(
            testcase_name=str(array_type),
            array=pa.array(range(9), type=array_type),
            slice_offset=2,
            slice_length=3,
            expected_size=(_all_false_null_bitmap_size(2) + sizeof * 9),
            expected_sliced_size=(_all_false_null_bitmap_size(1) + sizeof * 3)))
  return result 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:25,代碼來源:array_util_test.py

示例2: _get_numba_typ_from_pa_typ

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import uint32 [as 別名]
def _get_numba_typ_from_pa_typ(pa_typ):
    import pyarrow as pa
    _typ_map = {
        # boolean
        pa.bool_(): types.bool_,
        # signed int types
        pa.int8(): types.int8,
        pa.int16(): types.int16,
        pa.int32(): types.int32,
        pa.int64(): types.int64,
        # unsigned int types
        pa.uint8(): types.uint8,
        pa.uint16(): types.uint16,
        pa.uint32(): types.uint32,
        pa.uint64(): types.uint64,
        # float types (TODO: float16?)
        pa.float32(): types.float32,
        pa.float64(): types.float64,
        # String
        pa.string(): string_type,
        # date
        pa.date32(): types.NPDatetime('ns'),
        pa.date64(): types.NPDatetime('ns'),
        # time (TODO: time32, time64, ...)
        pa.timestamp('ns'): types.NPDatetime('ns'),
        pa.timestamp('us'): types.NPDatetime('ns'),
        pa.timestamp('ms'): types.NPDatetime('ns'),
        pa.timestamp('s'): types.NPDatetime('ns'),
    }
    if pa_typ not in _typ_map:
        raise ValueError("Arrow data type {} not supported yet".format(pa_typ))
    return _typ_map[pa_typ] 
開發者ID:IntelPython,項目名稱:sdc,代碼行數:34,代碼來源:parquet_pio.py

示例3: _dtype_to_arrow_type

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import uint32 [as 別名]
def _dtype_to_arrow_type(dtype: np.dtype) -> pyarrow.DataType:
    if dtype == np.int8:
        return pyarrow.int8()
    elif dtype == np.int16:
        return pyarrow.int16()
    elif dtype == np.int32:
        return pyarrow.int32()
    elif dtype == np.int64:
        return pyarrow.int64()
    elif dtype == np.uint8:
        return pyarrow.uint8()
    elif dtype == np.uint16:
        return pyarrow.uint16()
    elif dtype == np.uint32:
        return pyarrow.uint32()
    elif dtype == np.uint64:
        return pyarrow.uint64()
    elif dtype == np.float16:
        return pyarrow.float16()
    elif dtype == np.float32:
        return pyarrow.float32()
    elif dtype == np.float64:
        return pyarrow.float64()
    elif dtype.kind == "M":
        # [2019-09-17] Pandas only allows "ns" unit -- as in, datetime64[ns]
        # https://github.com/pandas-dev/pandas/issues/7307#issuecomment-224180563
        assert dtype.str.endswith("[ns]")
        return pyarrow.timestamp(unit="ns", tz=None)
    elif dtype == np.object_:
        return pyarrow.string()
    else:
        raise RuntimeError("Unhandled dtype %r" % dtype) 
開發者ID:CJWorkbench,項目名稱:cjworkbench,代碼行數:34,代碼來源:types.py

示例4: test2DSparseTensor

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import uint32 [as 別名]
def test2DSparseTensor(self):
    tensor_representation = text_format.Parse(
        """
        sparse_tensor {
          value_column_name: "values"
          index_column_names: ["d0", "d1"]
          dense_shape {
            dim {
              size: 10
            }
            dim {
              size: 20
            }
          }
        }
        """, schema_pb2.TensorRepresentation())
    record_batch = pa.RecordBatch.from_arrays([
        pa.array([[1], None, [2], [3, 4, 5], []], type=pa.list_(pa.int64())),
        # Also test that the index column can be of an integral type other
        # than int64.
        pa.array([[9], None, [9], [7, 8, 9], []], type=pa.list_(pa.uint32())),
        pa.array([[0], None, [0], [0, 1, 2], []], type=pa.list_(pa.int64()))
    ], ["values", "d0", "d1"])
    adapter = tensor_adapter.TensorAdapter(
        tensor_adapter.TensorAdapterConfig(record_batch.schema,
                                           {"output": tensor_representation}))
    converted = adapter.ToBatchTensors(record_batch)
    self.assertLen(converted, 1)
    self.assertIn("output", converted)
    actual_output = converted["output"]
    self.assertIsInstance(actual_output,
                          (tf.SparseTensor, tf.compat.v1.SparseTensorValue))
    self.assertSparseAllEqual(
        tf.compat.v1.SparseTensorValue(
            dense_shape=[5, 10, 20],
            indices=[[0, 9, 0], [2, 9, 0], [3, 7, 0], [3, 8, 1], [3, 9, 2]],
            values=tf.convert_to_tensor([1, 2, 3, 4, 5], dtype=tf.int64)),
        actual_output)

    self.assertAdapterCanProduceNonEagerInEagerMode(adapter, record_batch) 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:42,代碼來源:tensor_adapter_test.py


注:本文中的pyarrow.uint32方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。