當前位置: 首頁>>代碼示例>>Python>>正文


Python pyarrow.int64方法代碼示例

本文整理匯總了Python中pyarrow.int64方法的典型用法代碼示例。如果您正苦於以下問題:Python pyarrow.int64方法的具體用法?Python pyarrow.int64怎麽用?Python pyarrow.int64使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pyarrow的用法示例。


在下文中一共展示了pyarrow.int64方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_list_columns_and_indexes_without_named_index

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int64 [as 別名]
def test_list_columns_and_indexes_without_named_index(module_under_test):
    df_data = collections.OrderedDict(
        [
            ("a_series", [1, 2, 3, 4]),
            ("b_series", [0.1, 0.2, 0.3, 0.4]),
            ("c_series", ["a", "b", "c", "d"]),
        ]
    )
    dataframe = pandas.DataFrame(df_data)

    columns_and_indexes = module_under_test.list_columns_and_indexes(dataframe)
    expected = [
        ("a_series", pandas.api.types.pandas_dtype("int64")),
        ("b_series", pandas.api.types.pandas_dtype("float64")),
        ("c_series", pandas.api.types.pandas_dtype("object")),
    ]
    assert columns_and_indexes == expected 
開發者ID:googleapis,項目名稱:python-bigquery,代碼行數:19,代碼來源:test__pandas_helpers.py

示例2: test_list_columns_and_indexes_with_named_index_same_as_column_name

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int64 [as 別名]
def test_list_columns_and_indexes_with_named_index_same_as_column_name(
    module_under_test,
):
    df_data = collections.OrderedDict(
        [
            ("a_series", [1, 2, 3, 4]),
            ("b_series", [0.1, 0.2, 0.3, 0.4]),
            ("c_series", ["a", "b", "c", "d"]),
        ]
    )
    dataframe = pandas.DataFrame(
        df_data,
        # Use same name as an integer column but a different datatype so that
        # we can verify that the column is listed but the index isn't.
        index=pandas.Index([0.1, 0.2, 0.3, 0.4], name="a_series"),
    )

    columns_and_indexes = module_under_test.list_columns_and_indexes(dataframe)
    expected = [
        ("a_series", pandas.api.types.pandas_dtype("int64")),
        ("b_series", pandas.api.types.pandas_dtype("float64")),
        ("c_series", pandas.api.types.pandas_dtype("object")),
    ]
    assert columns_and_indexes == expected 
開發者ID:googleapis,項目名稱:python-bigquery,代碼行數:26,代碼來源:test__pandas_helpers.py

示例3: test_list_columns_and_indexes_with_named_index

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int64 [as 別名]
def test_list_columns_and_indexes_with_named_index(module_under_test):
    df_data = collections.OrderedDict(
        [
            ("a_series", [1, 2, 3, 4]),
            ("b_series", [0.1, 0.2, 0.3, 0.4]),
            ("c_series", ["a", "b", "c", "d"]),
        ]
    )
    dataframe = pandas.DataFrame(
        df_data, index=pandas.Index([4, 5, 6, 7], name="a_index")
    )

    columns_and_indexes = module_under_test.list_columns_and_indexes(dataframe)
    expected = [
        ("a_index", pandas.api.types.pandas_dtype("int64")),
        ("a_series", pandas.api.types.pandas_dtype("int64")),
        ("b_series", pandas.api.types.pandas_dtype("float64")),
        ("c_series", pandas.api.types.pandas_dtype("object")),
    ]
    assert columns_and_indexes == expected 
開發者ID:googleapis,項目名稱:python-bigquery,代碼行數:22,代碼來源:test__pandas_helpers.py

示例4: test_to_dataframe

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int64 [as 別名]
def test_to_dataframe(self):
        from google.cloud.bigquery.schema import SchemaField

        schema = [
            SchemaField("name", "STRING", mode="REQUIRED"),
            SchemaField("age", "INTEGER", mode="REQUIRED"),
        ]
        rows = [
            {"f": [{"v": "Phred Phlyntstone"}, {"v": "32"}]},
            {"f": [{"v": "Bharney Rhubble"}, {"v": "33"}]},
            {"f": [{"v": "Wylma Phlyntstone"}, {"v": "29"}]},
            {"f": [{"v": "Bhettye Rhubble"}, {"v": "27"}]},
        ]
        path = "/foo"
        api_request = mock.Mock(return_value={"rows": rows})
        row_iterator = self._make_one(_mock_client(), api_request, path, schema)

        df = row_iterator.to_dataframe(create_bqstorage_client=False)

        self.assertIsInstance(df, pandas.DataFrame)
        self.assertEqual(len(df), 4)  # verify the number of rows
        self.assertEqual(list(df), ["name", "age"])  # verify the column names
        self.assertEqual(df.name.dtype.name, "object")
        self.assertEqual(df.age.dtype.name, "int64") 
開發者ID:googleapis,項目名稱:python-bigquery,代碼行數:26,代碼來源:test_table.py

示例5: get_pa_translated_schema

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int64 [as 別名]
def get_pa_translated_schema(self):
        """Translates a BigQuery schema to an parquet schema.

        Returns: Translated parquet schema in pyarrow.Schema format.
        """

        type_conversions = {
            'STRING': pa.string(),
            'NUMERIC': pa.int64(),
        }

        # TODO(annarudy@google.com): add support for nested fields
        pa_schema_list = [
            pa.field(
                bq_field.name,
                type_conversions[bq_field.field_type],
            ) for bq_field in self.bq_schema
        ]

        return pa.schema(pa_schema_list) 
開發者ID:GoogleCloudPlatform,項目名稱:professional-services,代碼行數:22,代碼來源:parquet_util.py

示例6: test_index_store_roundtrip_explicit_key

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int64 [as 別名]
def test_index_store_roundtrip_explicit_key(store):
    storage_key = "dataset_uuid/some_index.parquet"
    index1 = ExplicitSecondaryIndex(
        column="col",
        index_dct={1: ["part_1", "part_2"], 3: ["part_3"]},
        index_storage_key=storage_key,
        dtype=pa.int64(),
    )
    key1 = index1.store(store, "dataset_uuid")

    index2 = ExplicitSecondaryIndex(column="col", index_storage_key=key1).load(store)
    assert index1 == index2
    key2 = index2.store(store, "dataset_uuid")

    index3 = ExplicitSecondaryIndex(column="col", index_storage_key=key2).load(store)
    assert index1 == index3
    assert index2 == index3 
開發者ID:JDASoftwareGroup,項目名稱:kartothek,代碼行數:19,代碼來源:test_index.py

示例7: test_index_as_flat_series

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int64 [as 別名]
def test_index_as_flat_series():
    index1 = ExplicitSecondaryIndex(
        column="col",
        index_dct={1: ["part_1", "part_2"], 2: ["part_1"]},
        dtype=pa.int64(),
    )
    ser = index1.as_flat_series()
    expected = pd.Series(
        ["part_1", "part_2", "part_1"],
        index=pd.Index([1, 1, 2], name="col"),
        name="partition",
    )
    assert_series_equal(ser, expected)

    ser_comp = index1.as_flat_series(compact=True)
    expected = pd.Series(
        [["part_1", "part_2"], ["part_1"]],
        index=pd.Index([1, 2], name="col"),
        name="partition",
    )
    assert_series_equal(ser_comp, expected) 
開發者ID:JDASoftwareGroup,項目名稱:kartothek,代碼行數:23,代碼來源:test_index.py

示例8: test_index_as_flat_series_partitions_as_index

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int64 [as 別名]
def test_index_as_flat_series_partitions_as_index():

    index1 = ExplicitSecondaryIndex(
        column="col",
        index_dct={1: ["part_1", "part_2"], 2: ["part_1"]},
        dtype=pa.int64(),
    )

    ser = index1.as_flat_series(partitions_as_index=True)
    expected = pd.Series(
        [1, 1, 2],
        index=pd.Index(["part_1", "part_2", "part_1"], name="partition"),
        name="col",
    )
    assert_series_equal(ser, expected)

    ser_comp = index1.as_flat_series(compact=True, partitions_as_index=True)
    expected = pd.Series(
        [[1, 2], [1]],
        index=pd.Index(["part_1", "part_2"], name="partition"),
        name="col",
    )
    assert_series_equal(ser_comp, expected) 
開發者ID:JDASoftwareGroup,項目名稱:kartothek,代碼行數:25,代碼來源:test_index.py

示例9: test_index_as_flat_series_highly_degenerated_sym

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int64 [as 別名]
def test_index_as_flat_series_highly_degenerated_sym():
    dim = 4
    index1 = ExplicitSecondaryIndex(
        column="col",
        index_dct={
            k: ["part_{}".format(i) for i in range(0, dim)] for k in range(0, dim)
        },
        dtype=pa.int64(),
    )
    ser = index1.as_flat_series()
    expected = pd.Series(
        ["part_{}".format(i) for i in range(0, dim)] * dim,
        index=pd.Index(
            np.array([[i] * dim for i in range(0, dim)]).ravel(), name="col"
        ),
        name="partition",
    )
    assert_series_equal(ser, expected) 
開發者ID:JDASoftwareGroup,項目名稱:kartothek,代碼行數:20,代碼來源:test_index.py

示例10: test_eval_operators_type_safety

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int64 [as 別名]
def test_eval_operators_type_safety():
    # gh66
    ind = IndexBase(column="col", index_dct={1234: ["part"]}, dtype=pa.int64())
    with pytest.raises(
        TypeError,
        match=r"Unexpected type for predicate: Column 'col' has pandas type 'int64', "
        r"but predicate value '1234' has pandas type 'object' \(Python type '<class 'str'>'\).",
    ):
        ind.eval_operator("==", "1234")
    with pytest.raises(
        TypeError,
        match=r"Unexpected type for predicate: Column 'col' has pandas type 'int64', "
        r"but predicate value 1234.0 has pandas type 'float64' \(Python type '<class 'float'>'\).",
    ):
        ind.eval_operator("==", 1234.0)

    assert ind.eval_operator("==", 1234) == {"part"} 
開發者ID:JDASoftwareGroup,項目名稱:kartothek,代碼行數:19,代碼來源:test_index.py

示例11: test_get_flattened_array_parent_indices

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int64 [as 別名]
def test_get_flattened_array_parent_indices(self, list_type_factory,
                                              parent_indices_type):
    indices = array_util.GetFlattenedArrayParentIndices(
        pa.array([], type=list_type_factory(pa.int32())))
    self.assertTrue(indices.equals(pa.array([], type=parent_indices_type)))

    indices = array_util.GetFlattenedArrayParentIndices(
        pa.array([[1.], [2.], [], [3., 4.]],
                 type=list_type_factory(pa.float32())))
    self.assertTrue(
        indices.equals(pa.array([0, 1, 3, 3], type=parent_indices_type)))

    indices = array_util.GetFlattenedArrayParentIndices(
        pa.array([[1.], [2.], [], [3., 4.]],
                 type=list_type_factory(pa.float32())).slice(1))
    self.assertTrue(
        indices.equals(pa.array([0, 2, 2], type=parent_indices_type)))

    indices = array_util.GetFlattenedArrayParentIndices(
        pa.array([list(range(1024))],
                 type=list_type_factory(pa.int64())))
    self.assertTrue(
        indices.equals(pa.array([0] * 1024, type=parent_indices_type))) 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:25,代碼來源:array_util_test.py

示例12: testCooFromListArray

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int64 [as 別名]
def testCooFromListArray(
      self, list_array, expected_coo, expected_dense_shape, array_types):

    for array_type in array_types:
      for input_array in [
          pa.array(list_array, type=array_type),
          # it should work for sliced arrays.
          pa.array(list_array + list_array,
                   type=array_type).slice(0, len(list_array)),
          pa.array(list_array + list_array,
                   type=array_type).slice(len(list_array)),
      ]:
        coo, dense_shape = array_util.CooFromListArray(input_array)
        self.assertTrue(coo.type.equals(pa.int64()))
        self.assertTrue(dense_shape.type.equals(pa.int64()))

        self.assertEqual(expected_coo, coo.to_pylist())
        self.assertEqual(expected_dense_shape, dense_shape.to_pylist()) 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:20,代碼來源:array_util_test.py

示例13: test_simple

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int64 [as 別名]
def test_simple(self, factory):
    # 3 int64 values
    # 5 int32 offsets
    # 1 null bitmap byte for outer ListArray
    # 1 null bitmap byte for inner Int64Array
    # 46 bytes in total.
    list_array = pa.array([[1, 2], [None], None, None],
                          type=pa.list_(pa.int64()))

    # 1 null bitmap byte for outer StructArray.
    # 1 null bitmap byte for inner Int64Array.
    # 4 int64 values.
    # 34 bytes in total
    struct_array = pa.array([{"a": 1}, {"a": 2}, {"a": None}, None],
                            type=pa.struct([pa.field("a", pa.int64())]))
    entity = factory([list_array, struct_array], ["a1", "a2"])

    self.assertEqual(46 + 34, table_util.TotalByteSize(entity)) 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:20,代碼來源:table_util_test.py

示例14: _GetExpectedColumnValues

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int64 [as 別名]
def _GetExpectedColumnValues(tfxio):
  if tfxio._can_produce_large_types:
    list_factory = pa.large_list
    bytes_type = pa.large_binary()
  else:
    list_factory = pa.list_
    bytes_type = pa.binary()

  return {
      path.ColumnPath(["int_feature"]):
          pa.array([[1], [2], [3]], type=list_factory(pa.int64())),
      path.ColumnPath(["float_feature"]):
          pa.array([[1, 2, 3, 4], [2, 3, 4, 5], None],
                   type=list_factory(pa.float32())),
      path.ColumnPath([_SEQUENCE_COLUMN_NAME, "int_feature"]):
          pa.array([[[1, 2], [3]], None, [[4]]],
                   list_factory(list_factory(pa.int64()))),
      path.ColumnPath([_SEQUENCE_COLUMN_NAME, "string_feature"]):
          pa.array([None, [[b"foo", b"bar"], []], [[b"baz"]]],
                   list_factory(list_factory(bytes_type)))
  } 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:23,代碼來源:tf_sequence_example_record_test.py

示例15: testRaggedTensorStructTypeInvalidSteps

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int64 [as 別名]
def testRaggedTensorStructTypeInvalidSteps(self):
    tensor_representation = text_format.Parse(
        """
        ragged_tensor {
          feature_path {
            step: "ragged_feature"
            step: "wrong_step"
          }
        }
        """, schema_pb2.TensorRepresentation())
    record_batch = pa.RecordBatch.from_arrays([
        pa.StructArray.from_arrays([
            pa.array([[1, 2, 3]], pa.list_(pa.int64())),
            pa.array([["a", "b", "c"]], pa.list_(pa.binary()))
        ], ["inner_feature", "x2"])
    ], ["ragged_feature"])
    with self.assertRaisesRegex(ValueError,
                                ".*Unable to handle tensor output.*"):
      tensor_adapter.TensorAdapter(
          tensor_adapter.TensorAdapterConfig(record_batch.schema,
                                             {"output": tensor_representation})) 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:23,代碼來源:tensor_adapter_test.py


注:本文中的pyarrow.int64方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。