本文整理匯總了Python中pyarrow.int32方法的典型用法代碼示例。如果您正苦於以下問題:Python pyarrow.int32方法的具體用法?Python pyarrow.int32怎麽用?Python pyarrow.int32使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pyarrow
的用法示例。
在下文中一共展示了pyarrow.int32方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_load_empty_table_arrow
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def test_load_empty_table_arrow(self, con):
con.execute("drop table if exists baz;")
con.execute("create table baz (a int, b float, c text);")
data = [(1, 1.1, 'a'), (2, 2.2, '2'), (3, 3.3, '3')]
df = pd.DataFrame(data, columns=list('abc')).astype(
{'a': 'int32', 'b': 'float32'}
)
table = pa.Table.from_pandas(df, preserve_index=False)
con.load_table("baz", table, method='arrow')
result = sorted(con.execute("select * from baz"))
self.check_empty_insert(result, data)
con.execute("drop table if exists baz;")
示例2: generic
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def generic(self, args, kws):
assert not kws
assert len(args) == 6
# array_ty = types.Array(ndim=1, layout='C', dtype=args[2])
return signature(types.int32, *unliteral_all(args))
# if _has_pyarrow:
# from .. import parquet_cpp
# ll.add_symbol('get_arrow_readers', parquet_cpp.get_arrow_readers)
# ll.add_symbol('del_arrow_readers', parquet_cpp.del_arrow_readers)
# ll.add_symbol('pq_read', parquet_cpp.read)
# ll.add_symbol('pq_read_parallel', parquet_cpp.read_parallel)
# ll.add_symbol('pq_get_size', parquet_cpp.get_size)
# ll.add_symbol('pq_read_string', parquet_cpp.read_string)
# ll.add_symbol('pq_read_string_parallel', parquet_cpp.read_string_parallel)
示例3: test_get_array_null_bitmap_as_byte_array
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def test_get_array_null_bitmap_as_byte_array(self):
array = pa.array([], type=pa.int32())
null_masks = array_util.GetArrayNullBitmapAsByteArray(array)
self.assertTrue(null_masks.equals(pa.array([], type=pa.uint8())))
array = pa.array([1, 2, None, 3, None], type=pa.int32())
null_masks = array_util.GetArrayNullBitmapAsByteArray(array)
self.assertTrue(
null_masks.equals(pa.array([0, 0, 1, 0, 1], type=pa.uint8())))
array = pa.array([1, 2, 3])
null_masks = array_util.GetArrayNullBitmapAsByteArray(array)
self.assertTrue(null_masks.equals(pa.array([0, 0, 0], type=pa.uint8())))
array = pa.array([None, None, None], type=pa.int32())
null_masks = array_util.GetArrayNullBitmapAsByteArray(array)
self.assertTrue(null_masks.equals(pa.array([1, 1, 1], type=pa.uint8())))
# Demonstrate that the returned array can be converted to a numpy boolean
# array w/o copying
np.testing.assert_equal(
np.array([True, True, True]), null_masks.to_numpy().view(np.bool))
示例4: test_get_flattened_array_parent_indices
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def test_get_flattened_array_parent_indices(self, list_type_factory,
parent_indices_type):
indices = array_util.GetFlattenedArrayParentIndices(
pa.array([], type=list_type_factory(pa.int32())))
self.assertTrue(indices.equals(pa.array([], type=parent_indices_type)))
indices = array_util.GetFlattenedArrayParentIndices(
pa.array([[1.], [2.], [], [3., 4.]],
type=list_type_factory(pa.float32())))
self.assertTrue(
indices.equals(pa.array([0, 1, 3, 3], type=parent_indices_type)))
indices = array_util.GetFlattenedArrayParentIndices(
pa.array([[1.], [2.], [], [3., 4.]],
type=list_type_factory(pa.float32())).slice(1))
self.assertTrue(
indices.equals(pa.array([0, 2, 2], type=parent_indices_type)))
indices = array_util.GetFlattenedArrayParentIndices(
pa.array([list(range(1024))],
type=list_type_factory(pa.int64())))
self.assertTrue(
indices.equals(pa.array([0] * 1024, type=parent_indices_type)))
示例5: _get_numeric_byte_size_test_cases
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def _get_numeric_byte_size_test_cases():
result = []
for array_type, sizeof in [
(pa.int8(), 1),
(pa.uint8(), 1),
(pa.int16(), 2),
(pa.uint16(), 2),
(pa.int32(), 4),
(pa.uint32(), 4),
(pa.int64(), 8),
(pa.uint64(), 8),
(pa.float32(), 4),
(pa.float64(), 8),
]:
result.append(
dict(
testcase_name=str(array_type),
array=pa.array(range(9), type=array_type),
slice_offset=2,
slice_length=3,
expected_size=(_all_false_null_bitmap_size(2) + sizeof * 9),
expected_sliced_size=(_all_false_null_bitmap_size(1) + sizeof * 3)))
return result
示例6: test_simple
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def test_simple(self, factory):
# 3 int64 values
# 5 int32 offsets
# 1 null bitmap byte for outer ListArray
# 1 null bitmap byte for inner Int64Array
# 46 bytes in total.
list_array = pa.array([[1, 2], [None], None, None],
type=pa.list_(pa.int64()))
# 1 null bitmap byte for outer StructArray.
# 1 null bitmap byte for inner Int64Array.
# 4 int64 values.
# 34 bytes in total
struct_array = pa.array([{"a": 1}, {"a": 2}, {"a": None}, None],
type=pa.struct([pa.field("a", pa.int64())]))
entity = factory([list_array, struct_array], ["a1", "a2"])
self.assertEqual(46 + 34, table_util.TotalByteSize(entity))
示例7: test_convert_json
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def test_convert_json():
"""
Test converting a JSON file to Parquet
"""
schema = pa.schema([
pa.field("foo", pa.int32()),
pa.field("bar", pa.int64())
])
input_path = "{}/tests/fixtures/simple_json.txt".format(os.getcwd())
expected_file = "{}/tests/fixtures/simple.parquet".format(os.getcwd())
with tempfile.NamedTemporaryFile() as f:
output_file = f.name
client.convert_json(input_path, output_file, schema)
output = pq.ParquetFile(output_file)
expected = pq.ParquetFile(expected_file)
assert output.metadata.num_columns == expected.metadata.num_columns
assert output.metadata.num_rows == expected.metadata.num_rows
assert output.schema.equals(expected.schema)
assert output.read_row_group(0).to_pydict() == expected.read_row_group(0).to_pydict()
示例8: test_iterate_over_int32_chunk
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def test_iterate_over_int32_chunk():
random.seed(datetime.datetime.now())
column_meta = [
{"logicalType": "FIXED", "precision": "10", "scale": "0"},
{"logicalType": "FIXED", "precision": "10", "scale": "0"}
]
def int32_generator():
return random.randint(-2147483648, 2147483637)
iterate_over_test_chunk([pyarrow.int32(), pyarrow.int32()],
column_meta, int32_generator)
示例9: get_pyarrow_types
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def get_pyarrow_types():
return {
'bool': PA_BOOL,
'float32': PA_FLOAT32,
'float64': PA_FLOAT64,
'int8': PA_INT8,
'int16': PA_INT16,
'int32': PA_INT32,
'int64': PA_INT64,
'string': PA_STRING,
'timestamp': PA_TIMESTAMP,
'base64': PA_BINARY
}
# pylint: disable=too-many-branches,too-many-statements
示例10: setUp
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def setUp(self):
self.sa_meta = sa.MetaData()
self.data = [
[17.124, 1.12, 3.14, 13.37],
[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4],
[True, None, False, True],
['string 1', 'string 2', None, 'string 3'],
[datetime(2007, 7, 13, 1, 23, 34, 123456),
None,
datetime(2006, 1, 13, 12, 34, 56, 432539),
datetime(2010, 8, 13, 5, 46, 57, 437699), ],
["Test Text", "Some#More#Test# Text", "!@#$%%^&*&", None],
]
self.table = sa.Table(
'unit_test_table',
self.sa_meta,
sa.Column('real_col', sa.REAL),
sa.Column('bigint_col', sa.BIGINT),
sa.Column('int_col', sa.INTEGER),
sa.Column('smallint_col', sa.SMALLINT),
sa.Column('bool_col', sa.BOOLEAN),
sa.Column('str_col', sa.VARCHAR),
sa.Column('timestamp_col', sa.TIMESTAMP),
sa.Column('plaintext_col', sa.TEXT),
)
self.expected_datatypes = [
pa.float32(),
pa.int64(),
pa.int32(),
pa.int16(),
pa.bool_(),
pa.string(),
pa.timestamp('ns'),
pa.string(),
]
示例11: test_make_named_tuple
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def test_make_named_tuple():
TestSchema = Unischema('TestSchema', [
UnischemaField('string_scalar', np.string_, (), ScalarCodec(StringType()), True),
UnischemaField('int32_scalar', np.int32, (), ScalarCodec(ShortType()), False),
UnischemaField('uint8_scalar', np.uint8, (), ScalarCodec(ShortType()), False),
UnischemaField('int32_matrix', np.float32, (10, 20, 3), NdarrayCodec(), True),
UnischemaField('decimal_scalar', Decimal, (10, 20, 3), ScalarCodec(DecimalType(10, 9)), False),
])
TestSchema.make_namedtuple(string_scalar='abc', int32_scalar=10, uint8_scalar=20,
int32_matrix=np.int32((10, 20, 3)), decimal_scalar=Decimal(123) / Decimal(10))
TestSchema.make_namedtuple(string_scalar=None, int32_scalar=10, uint8_scalar=20,
int32_matrix=None, decimal_scalar=Decimal(123) / Decimal(10))
示例12: test_insert_explicit_nulls
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def test_insert_explicit_nulls():
TestSchema = Unischema('TestSchema', [
UnischemaField('nullable', np.int32, (), ScalarCodec(StringType()), True),
UnischemaField('not_nullable', np.int32, (), ScalarCodec(ShortType()), False),
])
# Insert_explicit_nulls to leave the dictionary as is.
row_dict = {'nullable': 0, 'not_nullable': 1}
insert_explicit_nulls(TestSchema, row_dict)
assert len(row_dict) == 2
assert row_dict['nullable'] == 0
assert row_dict['not_nullable'] == 1
# Insert_explicit_nulls to leave the dictionary as is.
row_dict = {'nullable': None, 'not_nullable': 1}
insert_explicit_nulls(TestSchema, row_dict)
assert len(row_dict) == 2
assert row_dict['nullable'] is None
assert row_dict['not_nullable'] == 1
# We are missing a nullable field here. insert_explicit_nulls should add a None entry.
row_dict = {'not_nullable': 1}
insert_explicit_nulls(TestSchema, row_dict)
assert len(row_dict) == 2
assert row_dict['nullable'] is None
assert row_dict['not_nullable'] == 1
# We are missing a not_nullable field here. Should raise an ValueError.
row_dict = {'nullable': 0}
with pytest.raises(ValueError):
insert_explicit_nulls(TestSchema, row_dict)
示例13: test_name_property
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def test_name_property():
TestSchema = Unischema('TestSchema', [
UnischemaField('nullable', np.int32, (), ScalarCodec(StringType()), True),
])
assert 'TestSchema' == TestSchema._name
示例14: test_field_name_conflict_with_unischema_attribute
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def test_field_name_conflict_with_unischema_attribute():
# fields is an existing attribute of Unischema
with pytest.warns(UserWarning, match='Can not create dynamic property'):
Unischema('TestSchema', [UnischemaField('fields', np.int32, (), ScalarCodec(StringType()), True)])
示例15: test_match_unischema_fields
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def test_match_unischema_fields():
TestSchema = Unischema('TestSchema', [
UnischemaField('int32', np.int32, (), None, False),
UnischemaField('uint8', np.uint8, (), None, False),
UnischemaField('uint16', np.uint16, (), None, False),
])
assert match_unischema_fields(TestSchema, ['.*nt.*6']) == [TestSchema.uint16]
assert match_unischema_fields(TestSchema, ['nomatch']) == []
assert set(match_unischema_fields(TestSchema, ['.*'])) == set(TestSchema.fields.values())
assert set(match_unischema_fields(TestSchema, ['int32', 'uint8'])) == {TestSchema.int32, TestSchema.uint8}