當前位置: 首頁>>代碼示例>>Python>>正文


Python pyarrow.int32方法代碼示例

本文整理匯總了Python中pyarrow.int32方法的典型用法代碼示例。如果您正苦於以下問題:Python pyarrow.int32方法的具體用法?Python pyarrow.int32怎麽用?Python pyarrow.int32使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pyarrow的用法示例。


在下文中一共展示了pyarrow.int32方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_load_empty_table_arrow

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def test_load_empty_table_arrow(self, con):

        con.execute("drop table if exists baz;")
        con.execute("create table baz (a int, b float, c text);")

        data = [(1, 1.1, 'a'), (2, 2.2, '2'), (3, 3.3, '3')]

        df = pd.DataFrame(data, columns=list('abc')).astype(
            {'a': 'int32', 'b': 'float32'}
        )

        table = pa.Table.from_pandas(df, preserve_index=False)
        con.load_table("baz", table, method='arrow')
        result = sorted(con.execute("select * from baz"))
        self.check_empty_insert(result, data)
        con.execute("drop table if exists baz;") 
開發者ID:omnisci,項目名稱:pymapd,代碼行數:18,代碼來源:test_integration.py

示例2: generic

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def generic(self, args, kws):
        assert not kws
        assert len(args) == 6
        # array_ty = types.Array(ndim=1, layout='C', dtype=args[2])
        return signature(types.int32, *unliteral_all(args))


# if _has_pyarrow:
#     from .. import parquet_cpp
#     ll.add_symbol('get_arrow_readers', parquet_cpp.get_arrow_readers)
#     ll.add_symbol('del_arrow_readers', parquet_cpp.del_arrow_readers)
#     ll.add_symbol('pq_read', parquet_cpp.read)
#     ll.add_symbol('pq_read_parallel', parquet_cpp.read_parallel)
#     ll.add_symbol('pq_get_size', parquet_cpp.get_size)
#     ll.add_symbol('pq_read_string', parquet_cpp.read_string)
#     ll.add_symbol('pq_read_string_parallel', parquet_cpp.read_string_parallel) 
開發者ID:IntelPython,項目名稱:sdc,代碼行數:18,代碼來源:parquet_pio.py

示例3: test_get_array_null_bitmap_as_byte_array

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def test_get_array_null_bitmap_as_byte_array(self):
    array = pa.array([], type=pa.int32())
    null_masks = array_util.GetArrayNullBitmapAsByteArray(array)
    self.assertTrue(null_masks.equals(pa.array([], type=pa.uint8())))

    array = pa.array([1, 2, None, 3, None], type=pa.int32())
    null_masks = array_util.GetArrayNullBitmapAsByteArray(array)
    self.assertTrue(
        null_masks.equals(pa.array([0, 0, 1, 0, 1], type=pa.uint8())))

    array = pa.array([1, 2, 3])
    null_masks = array_util.GetArrayNullBitmapAsByteArray(array)
    self.assertTrue(null_masks.equals(pa.array([0, 0, 0], type=pa.uint8())))

    array = pa.array([None, None, None], type=pa.int32())
    null_masks = array_util.GetArrayNullBitmapAsByteArray(array)
    self.assertTrue(null_masks.equals(pa.array([1, 1, 1], type=pa.uint8())))
    # Demonstrate that the returned array can be converted to a numpy boolean
    # array w/o copying
    np.testing.assert_equal(
        np.array([True, True, True]), null_masks.to_numpy().view(np.bool)) 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:23,代碼來源:array_util_test.py

示例4: test_get_flattened_array_parent_indices

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def test_get_flattened_array_parent_indices(self, list_type_factory,
                                              parent_indices_type):
    indices = array_util.GetFlattenedArrayParentIndices(
        pa.array([], type=list_type_factory(pa.int32())))
    self.assertTrue(indices.equals(pa.array([], type=parent_indices_type)))

    indices = array_util.GetFlattenedArrayParentIndices(
        pa.array([[1.], [2.], [], [3., 4.]],
                 type=list_type_factory(pa.float32())))
    self.assertTrue(
        indices.equals(pa.array([0, 1, 3, 3], type=parent_indices_type)))

    indices = array_util.GetFlattenedArrayParentIndices(
        pa.array([[1.], [2.], [], [3., 4.]],
                 type=list_type_factory(pa.float32())).slice(1))
    self.assertTrue(
        indices.equals(pa.array([0, 2, 2], type=parent_indices_type)))

    indices = array_util.GetFlattenedArrayParentIndices(
        pa.array([list(range(1024))],
                 type=list_type_factory(pa.int64())))
    self.assertTrue(
        indices.equals(pa.array([0] * 1024, type=parent_indices_type))) 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:25,代碼來源:array_util_test.py

示例5: _get_numeric_byte_size_test_cases

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def _get_numeric_byte_size_test_cases():
  result = []
  for array_type, sizeof in [
      (pa.int8(), 1),
      (pa.uint8(), 1),
      (pa.int16(), 2),
      (pa.uint16(), 2),
      (pa.int32(), 4),
      (pa.uint32(), 4),
      (pa.int64(), 8),
      (pa.uint64(), 8),
      (pa.float32(), 4),
      (pa.float64(), 8),
  ]:
    result.append(
        dict(
            testcase_name=str(array_type),
            array=pa.array(range(9), type=array_type),
            slice_offset=2,
            slice_length=3,
            expected_size=(_all_false_null_bitmap_size(2) + sizeof * 9),
            expected_sliced_size=(_all_false_null_bitmap_size(1) + sizeof * 3)))
  return result 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:25,代碼來源:array_util_test.py

示例6: test_simple

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def test_simple(self, factory):
    # 3 int64 values
    # 5 int32 offsets
    # 1 null bitmap byte for outer ListArray
    # 1 null bitmap byte for inner Int64Array
    # 46 bytes in total.
    list_array = pa.array([[1, 2], [None], None, None],
                          type=pa.list_(pa.int64()))

    # 1 null bitmap byte for outer StructArray.
    # 1 null bitmap byte for inner Int64Array.
    # 4 int64 values.
    # 34 bytes in total
    struct_array = pa.array([{"a": 1}, {"a": 2}, {"a": None}, None],
                            type=pa.struct([pa.field("a", pa.int64())]))
    entity = factory([list_array, struct_array], ["a1", "a2"])

    self.assertEqual(46 + 34, table_util.TotalByteSize(entity)) 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:20,代碼來源:table_util_test.py

示例7: test_convert_json

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def test_convert_json():
    """
    Test converting a JSON file to Parquet
    """
    schema = pa.schema([
        pa.field("foo", pa.int32()),
        pa.field("bar", pa.int64())
    ])

    input_path = "{}/tests/fixtures/simple_json.txt".format(os.getcwd())
    expected_file = "{}/tests/fixtures/simple.parquet".format(os.getcwd())
    with tempfile.NamedTemporaryFile() as f:
        output_file = f.name
        client.convert_json(input_path, output_file, schema)
        output = pq.ParquetFile(output_file)
        expected = pq.ParquetFile(expected_file)
        assert output.metadata.num_columns == expected.metadata.num_columns
        assert output.metadata.num_rows == expected.metadata.num_rows
        assert output.schema.equals(expected.schema)
        assert output.read_row_group(0).to_pydict() == expected.read_row_group(0).to_pydict() 
開發者ID:andrewgross,項目名稱:json2parquet,代碼行數:22,代碼來源:test_client.py

示例8: test_iterate_over_int32_chunk

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def test_iterate_over_int32_chunk():
    random.seed(datetime.datetime.now())
    column_meta = [
            {"logicalType": "FIXED", "precision": "10", "scale": "0"},
            {"logicalType": "FIXED", "precision": "10", "scale": "0"}
    ]

    def int32_generator():
        return random.randint(-2147483648, 2147483637)

    iterate_over_test_chunk([pyarrow.int32(), pyarrow.int32()],
                            column_meta, int32_generator) 
開發者ID:snowflakedb,項目名稱:snowflake-connector-python,代碼行數:14,代碼來源:test_unit_arrow_chunk_iterator.py

示例9: get_pyarrow_types

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def get_pyarrow_types():
    return {
        'bool': PA_BOOL,
        'float32': PA_FLOAT32,
        'float64': PA_FLOAT64,
        'int8': PA_INT8,
        'int16': PA_INT16,
        'int32': PA_INT32,
        'int64': PA_INT64,
        'string': PA_STRING,
        'timestamp': PA_TIMESTAMP,
        'base64': PA_BINARY
    }

# pylint: disable=too-many-branches,too-many-statements 
開發者ID:cldellow,項目名稱:csv2parquet,代碼行數:17,代碼來源:csv2parquet.py

示例10: setUp

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def setUp(self):
        self.sa_meta = sa.MetaData()
        self.data = [
            [17.124, 1.12, 3.14, 13.37],
            [1, 2, 3, 4],
            [1, 2, 3, 4],
            [1, 2, 3, 4],
            [True, None, False, True],
            ['string 1', 'string 2', None, 'string 3'],
            [datetime(2007, 7, 13, 1, 23, 34, 123456),
             None,
             datetime(2006, 1, 13, 12, 34, 56, 432539),
             datetime(2010, 8, 13, 5, 46, 57, 437699), ],
            ["Test Text", "Some#More#Test#  Text", "!@#$%%^&*&", None],
        ]
        self.table = sa.Table(
            'unit_test_table',
            self.sa_meta,
            sa.Column('real_col', sa.REAL),
            sa.Column('bigint_col', sa.BIGINT),
            sa.Column('int_col', sa.INTEGER),
            sa.Column('smallint_col', sa.SMALLINT),
            sa.Column('bool_col', sa.BOOLEAN),
            sa.Column('str_col', sa.VARCHAR),
            sa.Column('timestamp_col', sa.TIMESTAMP),
            sa.Column('plaintext_col', sa.TEXT),
        )

        self.expected_datatypes = [
            pa.float32(),
            pa.int64(),
            pa.int32(),
            pa.int16(),
            pa.bool_(),
            pa.string(),
            pa.timestamp('ns'),
            pa.string(),
        ] 
開發者ID:hellonarrativ,項目名稱:spectrify,代碼行數:40,代碼來源:test_parquet.py

示例11: test_make_named_tuple

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def test_make_named_tuple():
    TestSchema = Unischema('TestSchema', [
        UnischemaField('string_scalar', np.string_, (), ScalarCodec(StringType()), True),
        UnischemaField('int32_scalar', np.int32, (), ScalarCodec(ShortType()), False),
        UnischemaField('uint8_scalar', np.uint8, (), ScalarCodec(ShortType()), False),
        UnischemaField('int32_matrix', np.float32, (10, 20, 3), NdarrayCodec(), True),
        UnischemaField('decimal_scalar', Decimal, (10, 20, 3), ScalarCodec(DecimalType(10, 9)), False),
    ])

    TestSchema.make_namedtuple(string_scalar='abc', int32_scalar=10, uint8_scalar=20,
                               int32_matrix=np.int32((10, 20, 3)), decimal_scalar=Decimal(123) / Decimal(10))

    TestSchema.make_namedtuple(string_scalar=None, int32_scalar=10, uint8_scalar=20,
                               int32_matrix=None, decimal_scalar=Decimal(123) / Decimal(10)) 
開發者ID:uber,項目名稱:petastorm,代碼行數:16,代碼來源:test_unischema.py

示例12: test_insert_explicit_nulls

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def test_insert_explicit_nulls():
    TestSchema = Unischema('TestSchema', [
        UnischemaField('nullable', np.int32, (), ScalarCodec(StringType()), True),
        UnischemaField('not_nullable', np.int32, (), ScalarCodec(ShortType()), False),
    ])

    # Insert_explicit_nulls to leave the dictionary as is.
    row_dict = {'nullable': 0, 'not_nullable': 1}
    insert_explicit_nulls(TestSchema, row_dict)
    assert len(row_dict) == 2
    assert row_dict['nullable'] == 0
    assert row_dict['not_nullable'] == 1

    # Insert_explicit_nulls to leave the dictionary as is.
    row_dict = {'nullable': None, 'not_nullable': 1}
    insert_explicit_nulls(TestSchema, row_dict)
    assert len(row_dict) == 2
    assert row_dict['nullable'] is None
    assert row_dict['not_nullable'] == 1

    # We are missing a nullable field here. insert_explicit_nulls should add a None entry.
    row_dict = {'not_nullable': 1}
    insert_explicit_nulls(TestSchema, row_dict)
    assert len(row_dict) == 2
    assert row_dict['nullable'] is None
    assert row_dict['not_nullable'] == 1

    # We are missing a not_nullable field here. Should raise an ValueError.
    row_dict = {'nullable': 0}
    with pytest.raises(ValueError):
        insert_explicit_nulls(TestSchema, row_dict) 
開發者ID:uber,項目名稱:petastorm,代碼行數:33,代碼來源:test_unischema.py

示例13: test_name_property

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def test_name_property():
    TestSchema = Unischema('TestSchema', [
        UnischemaField('nullable', np.int32, (), ScalarCodec(StringType()), True),
    ])

    assert 'TestSchema' == TestSchema._name 
開發者ID:uber,項目名稱:petastorm,代碼行數:8,代碼來源:test_unischema.py

示例14: test_field_name_conflict_with_unischema_attribute

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def test_field_name_conflict_with_unischema_attribute():
    # fields is an existing attribute of Unischema
    with pytest.warns(UserWarning, match='Can not create dynamic property'):
        Unischema('TestSchema', [UnischemaField('fields', np.int32, (), ScalarCodec(StringType()), True)]) 
開發者ID:uber,項目名稱:petastorm,代碼行數:6,代碼來源:test_unischema.py

示例15: test_match_unischema_fields

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import int32 [as 別名]
def test_match_unischema_fields():
    TestSchema = Unischema('TestSchema', [
        UnischemaField('int32', np.int32, (), None, False),
        UnischemaField('uint8', np.uint8, (), None, False),
        UnischemaField('uint16', np.uint16, (), None, False),
    ])

    assert match_unischema_fields(TestSchema, ['.*nt.*6']) == [TestSchema.uint16]
    assert match_unischema_fields(TestSchema, ['nomatch']) == []
    assert set(match_unischema_fields(TestSchema, ['.*'])) == set(TestSchema.fields.values())
    assert set(match_unischema_fields(TestSchema, ['int32', 'uint8'])) == {TestSchema.int32, TestSchema.uint8} 
開發者ID:uber,項目名稱:petastorm,代碼行數:13,代碼來源:test_unischema.py


注:本文中的pyarrow.int32方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。