當前位置: 首頁>>代碼示例>>Python>>正文


Python pyarrow.float64方法代碼示例

本文整理匯總了Python中pyarrow.float64方法的典型用法代碼示例。如果您正苦於以下問題:Python pyarrow.float64方法的具體用法?Python pyarrow.float64怎麽用?Python pyarrow.float64使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pyarrow的用法示例。


在下文中一共展示了pyarrow.float64方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_list_columns_and_indexes_without_named_index

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float64 [as 別名]
def test_list_columns_and_indexes_without_named_index(module_under_test):
    df_data = collections.OrderedDict(
        [
            ("a_series", [1, 2, 3, 4]),
            ("b_series", [0.1, 0.2, 0.3, 0.4]),
            ("c_series", ["a", "b", "c", "d"]),
        ]
    )
    dataframe = pandas.DataFrame(df_data)

    columns_and_indexes = module_under_test.list_columns_and_indexes(dataframe)
    expected = [
        ("a_series", pandas.api.types.pandas_dtype("int64")),
        ("b_series", pandas.api.types.pandas_dtype("float64")),
        ("c_series", pandas.api.types.pandas_dtype("object")),
    ]
    assert columns_and_indexes == expected 
開發者ID:googleapis,項目名稱:python-bigquery,代碼行數:19,代碼來源:test__pandas_helpers.py

示例2: test_list_columns_and_indexes_with_named_index_same_as_column_name

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float64 [as 別名]
def test_list_columns_and_indexes_with_named_index_same_as_column_name(
    module_under_test,
):
    df_data = collections.OrderedDict(
        [
            ("a_series", [1, 2, 3, 4]),
            ("b_series", [0.1, 0.2, 0.3, 0.4]),
            ("c_series", ["a", "b", "c", "d"]),
        ]
    )
    dataframe = pandas.DataFrame(
        df_data,
        # Use same name as an integer column but a different datatype so that
        # we can verify that the column is listed but the index isn't.
        index=pandas.Index([0.1, 0.2, 0.3, 0.4], name="a_series"),
    )

    columns_and_indexes = module_under_test.list_columns_and_indexes(dataframe)
    expected = [
        ("a_series", pandas.api.types.pandas_dtype("int64")),
        ("b_series", pandas.api.types.pandas_dtype("float64")),
        ("c_series", pandas.api.types.pandas_dtype("object")),
    ]
    assert columns_and_indexes == expected 
開發者ID:googleapis,項目名稱:python-bigquery,代碼行數:26,代碼來源:test__pandas_helpers.py

示例3: test_list_columns_and_indexes_with_named_index

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float64 [as 別名]
def test_list_columns_and_indexes_with_named_index(module_under_test):
    df_data = collections.OrderedDict(
        [
            ("a_series", [1, 2, 3, 4]),
            ("b_series", [0.1, 0.2, 0.3, 0.4]),
            ("c_series", ["a", "b", "c", "d"]),
        ]
    )
    dataframe = pandas.DataFrame(
        df_data, index=pandas.Index([4, 5, 6, 7], name="a_index")
    )

    columns_and_indexes = module_under_test.list_columns_and_indexes(dataframe)
    expected = [
        ("a_index", pandas.api.types.pandas_dtype("int64")),
        ("a_series", pandas.api.types.pandas_dtype("int64")),
        ("b_series", pandas.api.types.pandas_dtype("float64")),
        ("c_series", pandas.api.types.pandas_dtype("object")),
    ]
    assert columns_and_indexes == expected 
開發者ID:googleapis,項目名稱:python-bigquery,代碼行數:22,代碼來源:test__pandas_helpers.py

示例4: test_reduce_op_no_identity

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float64 [as 別名]
def test_reduce_op_no_identity(data, skipna, op, pandas_op):
    arrow = pa.array(data, type=pa.float64(), from_pandas=True)
    pandas = pd.Series(data, dtype=float)
    should_raise = arrow.null_count == len(arrow) and (skipna or len(arrow) == 0)

    if should_raise:
        with pytest.raises(ValueError):
            assert_allclose_na(op(arrow, skipna), pandas_op(pandas, skipna=skipna))
    else:
        assert_allclose_na(op(arrow, skipna), pandas_op(pandas, skipna=skipna))

    # Split in the middle and check whether this still works
    if len(data) > 2:
        arrow = pa.chunked_array(
            [
                pa.array(data[: len(data) // 2], type=pa.float64(), from_pandas=True),
                pa.array(data[len(data) // 2 :], type=pa.float64(), from_pandas=True),
            ]
        )
        if should_raise:
            with pytest.raises(ValueError):
                assert_allclose_na(op(arrow, skipna), pandas_op(pandas, skipna=skipna))
        else:
            assert_allclose_na(op(arrow, skipna), pandas_op(pandas, skipna=skipna)) 
開發者ID:xhochy,項目名稱:fletcher,代碼行數:26,代碼來源:test_algorithms.py

示例5: format

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float64 [as 別名]
def format(self, value: Union[int, float]) -> str:
        if self._need_int:
            value = int(value)
        else:
            # Format float64 _integers_ as int. For instance, '3.0' should be
            # formatted as though it were the int, '3'.
            #
            # Python would normally format '3.0' as '3.0' by default; that's
            # not acceptable to us because we can't write a JavaScript
            # formatter that would do the same thing. (Javascript doesn't
            # distinguish between float and int.)
            int_value = int(value)
            if int_value == value:
                value = int_value

        return self._prefix + format(value, self._format_spec) + self._suffix 
開發者ID:CJWorkbench,項目名稱:cjworkbench,代碼行數:18,代碼來源:types.py

示例6: test_eval_operators_type_safety

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float64 [as 別名]
def test_eval_operators_type_safety():
    # gh66
    ind = IndexBase(column="col", index_dct={1234: ["part"]}, dtype=pa.int64())
    with pytest.raises(
        TypeError,
        match=r"Unexpected type for predicate: Column 'col' has pandas type 'int64', "
        r"but predicate value '1234' has pandas type 'object' \(Python type '<class 'str'>'\).",
    ):
        ind.eval_operator("==", "1234")
    with pytest.raises(
        TypeError,
        match=r"Unexpected type for predicate: Column 'col' has pandas type 'int64', "
        r"but predicate value 1234.0 has pandas type 'float64' \(Python type '<class 'float'>'\).",
    ):
        ind.eval_operator("==", 1234.0)

    assert ind.eval_operator("==", 1234) == {"part"} 
開發者ID:JDASoftwareGroup,項目名稱:kartothek,代碼行數:19,代碼來源:test_index.py

示例7: _get_numeric_byte_size_test_cases

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float64 [as 別名]
def _get_numeric_byte_size_test_cases():
  result = []
  for array_type, sizeof in [
      (pa.int8(), 1),
      (pa.uint8(), 1),
      (pa.int16(), 2),
      (pa.uint16(), 2),
      (pa.int32(), 4),
      (pa.uint32(), 4),
      (pa.int64(), 8),
      (pa.uint64(), 8),
      (pa.float32(), 4),
      (pa.float64(), 8),
  ]:
    result.append(
        dict(
            testcase_name=str(array_type),
            array=pa.array(range(9), type=array_type),
            slice_offset=2,
            slice_length=3,
            expected_size=(_all_false_null_bitmap_size(2) + sizeof * 9),
            expected_sliced_size=(_all_false_null_bitmap_size(1) + sizeof * 3)))
  return result 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:25,代碼來源:array_util_test.py

示例8: test_iterate_over_float_chunk

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float64 [as 別名]
def test_iterate_over_float_chunk():
    random.seed(datetime.datetime.now())
    column_meta = [
            {"logicalType": "REAL"},
            {"logicalType": "FLOAT"}
    ]

    def float_generator():
        return random.uniform(-100.0, 100.0)

    iterate_over_test_chunk([pyarrow.float64(), pyarrow.float64()],
                            column_meta, float_generator) 
開發者ID:snowflakedb,項目名稱:snowflake-connector-python,代碼行數:14,代碼來源:test_unit_arrow_chunk_iterator.py

示例9: get_pyarrow_types

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float64 [as 別名]
def get_pyarrow_types():
    return {
        'bool': PA_BOOL,
        'float32': PA_FLOAT32,
        'float64': PA_FLOAT64,
        'int8': PA_INT8,
        'int16': PA_INT16,
        'int32': PA_INT32,
        'int64': PA_INT64,
        'string': PA_STRING,
        'timestamp': PA_TIMESTAMP,
        'base64': PA_BINARY
    }

# pylint: disable=too-many-branches,too-many-statements 
開發者ID:cldellow,項目名稱:csv2parquet,代碼行數:17,代碼來源:csv2parquet.py

示例10: test_dict_to_spark_row_order

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float64 [as 別名]
def test_dict_to_spark_row_order():
    TestSchema = Unischema('TestSchema', [
        UnischemaField('float_col', np.float64, ()),
        UnischemaField('int_col', np.int64, ()),
    ])
    row_dict = {
        TestSchema.int_col.name: 3,
        TestSchema.float_col.name: 2.0,
    }
    spark_row = dict_to_spark_row(TestSchema, row_dict)
    schema_field_names = list(TestSchema.fields)
    assert spark_row[0] == row_dict[schema_field_names[0]]
    assert spark_row[1] == row_dict[schema_field_names[1]] 
開發者ID:uber,項目名稱:petastorm,代碼行數:15,代碼來源:test_unischema.py

示例11: test_arrow_schema_convertion

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float64 [as 別名]
def test_arrow_schema_convertion():
    fields = [
        pa.field('string', pa.string()),
        pa.field('int8', pa.int8()),
        pa.field('int16', pa.int16()),
        pa.field('int32', pa.int32()),
        pa.field('int64', pa.int64()),
        pa.field('float', pa.float32()),
        pa.field('double', pa.float64()),
        pa.field('bool', pa.bool_(), False),
        pa.field('fixed_size_binary', pa.binary(10)),
        pa.field('variable_size_binary', pa.binary()),
        pa.field('decimal', pa.decimal128(3, 4)),
        pa.field('timestamp_s', pa.timestamp('s')),
        pa.field('timestamp_ns', pa.timestamp('ns')),
        pa.field('date_32', pa.date32()),
        pa.field('date_64', pa.date64())
    ]
    arrow_schema = pa.schema(fields)

    mock_dataset = _mock_parquet_dataset([], arrow_schema)

    unischema = Unischema.from_arrow_schema(mock_dataset)
    for name in arrow_schema.names:
        assert getattr(unischema, name).name == name
        assert getattr(unischema, name).codec is None

        if name == 'bool':
            assert not getattr(unischema, name).nullable
        else:
            assert getattr(unischema, name).nullable

    # Test schema preserve fields order
    field_name_list = [f.name for f in fields]
    assert list(unischema.fields.keys()) == field_name_list 
開發者ID:uber,項目名稱:petastorm,代碼行數:37,代碼來源:test_unischema.py

示例12: to_arrow_type

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float64 [as 別名]
def to_arrow_type(dt):
    """ Convert Spark data type to pyarrow type
    """
    from distutils.version import LooseVersion
    import pyarrow as pa
    if type(dt) == BooleanType:
        arrow_type = pa.bool_()
    elif type(dt) == ByteType:
        arrow_type = pa.int8()
    elif type(dt) == ShortType:
        arrow_type = pa.int16()
    elif type(dt) == IntegerType:
        arrow_type = pa.int32()
    elif type(dt) == LongType:
        arrow_type = pa.int64()
    elif type(dt) == FloatType:
        arrow_type = pa.float32()
    elif type(dt) == DoubleType:
        arrow_type = pa.float64()
    elif type(dt) == DecimalType:
        arrow_type = pa.decimal128(dt.precision, dt.scale)
    elif type(dt) == StringType:
        arrow_type = pa.string()
    elif type(dt) == BinaryType:
        # TODO: remove version check once minimum pyarrow version is 0.10.0
        if LooseVersion(pa.__version__) < LooseVersion("0.10.0"):
            raise TypeError("Unsupported type in conversion to Arrow: " + str(dt) +
                            "\nPlease install pyarrow >= 0.10.0 for BinaryType support.")
        arrow_type = pa.binary()
    elif type(dt) == DateType:
        arrow_type = pa.date32()
    elif type(dt) == TimestampType:
        # Timestamps should be in UTC, JVM Arrow timestamps require a timezone to be read
        arrow_type = pa.timestamp('us', tz='UTC')
    elif type(dt) == ArrayType:
        if type(dt.elementType) == TimestampType:
            raise TypeError("Unsupported type in conversion to Arrow: " + str(dt))
        arrow_type = pa.list_(to_arrow_type(dt.elementType))
    else:
        raise TypeError("Unsupported type in conversion to Arrow: " + str(dt))
    return arrow_type 
開發者ID:runawayhorse001,項目名稱:LearningApacheSpark,代碼行數:43,代碼來源:types.py

示例13: test_bq_to_arrow_data_type_w_struct

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float64 [as 別名]
def test_bq_to_arrow_data_type_w_struct(module_under_test, bq_type):
    fields = (
        schema.SchemaField("field01", "STRING"),
        schema.SchemaField("field02", "BYTES"),
        schema.SchemaField("field03", "INTEGER"),
        schema.SchemaField("field04", "INT64"),
        schema.SchemaField("field05", "FLOAT"),
        schema.SchemaField("field06", "FLOAT64"),
        schema.SchemaField("field07", "NUMERIC"),
        schema.SchemaField("field08", "BOOLEAN"),
        schema.SchemaField("field09", "BOOL"),
        schema.SchemaField("field10", "TIMESTAMP"),
        schema.SchemaField("field11", "DATE"),
        schema.SchemaField("field12", "TIME"),
        schema.SchemaField("field13", "DATETIME"),
        schema.SchemaField("field14", "GEOGRAPHY"),
    )
    field = schema.SchemaField("ignored_name", bq_type, mode="NULLABLE", fields=fields)
    actual = module_under_test.bq_to_arrow_data_type(field)
    expected = pyarrow.struct(
        (
            pyarrow.field("field01", pyarrow.string()),
            pyarrow.field("field02", pyarrow.binary()),
            pyarrow.field("field03", pyarrow.int64()),
            pyarrow.field("field04", pyarrow.int64()),
            pyarrow.field("field05", pyarrow.float64()),
            pyarrow.field("field06", pyarrow.float64()),
            pyarrow.field("field07", module_under_test.pyarrow_numeric()),
            pyarrow.field("field08", pyarrow.bool_()),
            pyarrow.field("field09", pyarrow.bool_()),
            pyarrow.field("field10", module_under_test.pyarrow_timestamp()),
            pyarrow.field("field11", pyarrow.date32()),
            pyarrow.field("field12", module_under_test.pyarrow_time()),
            pyarrow.field("field13", module_under_test.pyarrow_datetime()),
            pyarrow.field("field14", pyarrow.string()),
        )
    )
    assert pyarrow.types.is_struct(actual)
    assert actual.num_children == len(fields)
    assert actual.equals(expected) 
開發者ID:googleapis,項目名稱:python-bigquery,代碼行數:42,代碼來源:test__pandas_helpers.py

示例14: test_bq_to_arrow_data_type_w_array_struct

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float64 [as 別名]
def test_bq_to_arrow_data_type_w_array_struct(module_under_test, bq_type):
    fields = (
        schema.SchemaField("field01", "STRING"),
        schema.SchemaField("field02", "BYTES"),
        schema.SchemaField("field03", "INTEGER"),
        schema.SchemaField("field04", "INT64"),
        schema.SchemaField("field05", "FLOAT"),
        schema.SchemaField("field06", "FLOAT64"),
        schema.SchemaField("field07", "NUMERIC"),
        schema.SchemaField("field08", "BOOLEAN"),
        schema.SchemaField("field09", "BOOL"),
        schema.SchemaField("field10", "TIMESTAMP"),
        schema.SchemaField("field11", "DATE"),
        schema.SchemaField("field12", "TIME"),
        schema.SchemaField("field13", "DATETIME"),
        schema.SchemaField("field14", "GEOGRAPHY"),
    )
    field = schema.SchemaField("ignored_name", bq_type, mode="REPEATED", fields=fields)
    actual = module_under_test.bq_to_arrow_data_type(field)
    expected_value_type = pyarrow.struct(
        (
            pyarrow.field("field01", pyarrow.string()),
            pyarrow.field("field02", pyarrow.binary()),
            pyarrow.field("field03", pyarrow.int64()),
            pyarrow.field("field04", pyarrow.int64()),
            pyarrow.field("field05", pyarrow.float64()),
            pyarrow.field("field06", pyarrow.float64()),
            pyarrow.field("field07", module_under_test.pyarrow_numeric()),
            pyarrow.field("field08", pyarrow.bool_()),
            pyarrow.field("field09", pyarrow.bool_()),
            pyarrow.field("field10", module_under_test.pyarrow_timestamp()),
            pyarrow.field("field11", pyarrow.date32()),
            pyarrow.field("field12", module_under_test.pyarrow_time()),
            pyarrow.field("field13", module_under_test.pyarrow_datetime()),
            pyarrow.field("field14", pyarrow.string()),
        )
    )
    assert pyarrow.types.is_list(actual)
    assert pyarrow.types.is_struct(actual.value_type)
    assert actual.value_type.num_children == len(fields)
    assert actual.value_type.equals(expected_value_type) 
開發者ID:googleapis,項目名稱:python-bigquery,代碼行數:43,代碼來源:test__pandas_helpers.py

示例15: test_to_dataframe_column_dtypes

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float64 [as 別名]
def test_to_dataframe_column_dtypes(self):
        from google.cloud.bigquery.schema import SchemaField

        schema = [
            SchemaField("start_timestamp", "TIMESTAMP"),
            SchemaField("seconds", "INT64"),
            SchemaField("miles", "FLOAT64"),
            SchemaField("km", "FLOAT64"),
            SchemaField("payment_type", "STRING"),
            SchemaField("complete", "BOOL"),
            SchemaField("date", "DATE"),
        ]
        row_data = [
            ["1.4338368E9", "420", "1.1", "1.77", u"Cash", "true", "1999-12-01"],
            ["1.3878117E9", "2580", "17.7", "28.5", u"Cash", "false", "1953-06-14"],
            ["1.3855653E9", "2280", "4.4", "7.1", u"Credit", "true", "1981-11-04"],
        ]
        rows = [{"f": [{"v": field} for field in row]} for row in row_data]
        path = "/foo"
        api_request = mock.Mock(return_value={"rows": rows})
        row_iterator = self._make_one(_mock_client(), api_request, path, schema)

        df = row_iterator.to_dataframe(
            dtypes={"km": "float16"}, create_bqstorage_client=False,
        )

        self.assertIsInstance(df, pandas.DataFrame)
        self.assertEqual(len(df), 3)  # verify the number of rows
        exp_columns = [field.name for field in schema]
        self.assertEqual(list(df), exp_columns)  # verify the column names

        self.assertEqual(df.start_timestamp.dtype.name, "datetime64[ns, UTC]")
        self.assertEqual(df.seconds.dtype.name, "int64")
        self.assertEqual(df.miles.dtype.name, "float64")
        self.assertEqual(df.km.dtype.name, "float16")
        self.assertEqual(df.payment_type.dtype.name, "object")
        self.assertEqual(df.complete.dtype.name, "bool")
        self.assertEqual(df.date.dtype.name, "object") 
開發者ID:googleapis,項目名稱:python-bigquery,代碼行數:40,代碼來源:test_table.py


注:本文中的pyarrow.float64方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。