當前位置: 首頁>>代碼示例>>Python>>正文


Python pyarrow.float32方法代碼示例

本文整理匯總了Python中pyarrow.float32方法的典型用法代碼示例。如果您正苦於以下問題:Python pyarrow.float32方法的具體用法?Python pyarrow.float32怎麽用?Python pyarrow.float32使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pyarrow的用法示例。


在下文中一共展示了pyarrow.float32方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_load_empty_table_arrow

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float32 [as 別名]
def test_load_empty_table_arrow(self, con):

        con.execute("drop table if exists baz;")
        con.execute("create table baz (a int, b float, c text);")

        data = [(1, 1.1, 'a'), (2, 2.2, '2'), (3, 3.3, '3')]

        df = pd.DataFrame(data, columns=list('abc')).astype(
            {'a': 'int32', 'b': 'float32'}
        )

        table = pa.Table.from_pandas(df, preserve_index=False)
        con.load_table("baz", table, method='arrow')
        result = sorted(con.execute("select * from baz"))
        self.check_empty_insert(result, data)
        con.execute("drop table if exists baz;") 
開發者ID:omnisci,項目名稱:pymapd,代碼行數:18,代碼來源:test_integration.py

示例2: array_chunked_nulls

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float32 [as 別名]
def array_chunked_nulls(request):
    case_dict = {
        "all": pa.chunked_array([pa.array([None] * 4) for _ in range(10)]),
        "all_float": pa.chunked_array(
            [pa.array([None] * 4, type=pa.float32()) for _ in range(10)]
        ),
        "some_in_all_chunks": pa.chunked_array(
            [pa.array(["a", "b", None] * 4), pa.array(["a", None, "b"] * 4)]
        ),
        "only_in_some_chunk": pa.chunked_array(
            [
                pa.array(["a", "x"]),
                pa.array(["a", "b", None] * 4),
                pa.array(["a", "b"] * 4),
            ]
        ),
        "none": pa.chunked_array([pa.array(["a", "b"] * 4) for _ in range(10)]),
    }
    return case_dict[request.param]


# ----------------------------------------------------------------------------
# Block Methods
# ---------------------------------------------------------------------------- 
開發者ID:xhochy,項目名稱:fletcher,代碼行數:26,代碼來源:test_pandas_integration.py

示例3: test_get_flattened_array_parent_indices

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float32 [as 別名]
def test_get_flattened_array_parent_indices(self, list_type_factory,
                                              parent_indices_type):
    indices = array_util.GetFlattenedArrayParentIndices(
        pa.array([], type=list_type_factory(pa.int32())))
    self.assertTrue(indices.equals(pa.array([], type=parent_indices_type)))

    indices = array_util.GetFlattenedArrayParentIndices(
        pa.array([[1.], [2.], [], [3., 4.]],
                 type=list_type_factory(pa.float32())))
    self.assertTrue(
        indices.equals(pa.array([0, 1, 3, 3], type=parent_indices_type)))

    indices = array_util.GetFlattenedArrayParentIndices(
        pa.array([[1.], [2.], [], [3., 4.]],
                 type=list_type_factory(pa.float32())).slice(1))
    self.assertTrue(
        indices.equals(pa.array([0, 2, 2], type=parent_indices_type)))

    indices = array_util.GetFlattenedArrayParentIndices(
        pa.array([list(range(1024))],
                 type=list_type_factory(pa.int64())))
    self.assertTrue(
        indices.equals(pa.array([0] * 1024, type=parent_indices_type))) 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:25,代碼來源:array_util_test.py

示例4: _get_numeric_byte_size_test_cases

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float32 [as 別名]
def _get_numeric_byte_size_test_cases():
  result = []
  for array_type, sizeof in [
      (pa.int8(), 1),
      (pa.uint8(), 1),
      (pa.int16(), 2),
      (pa.uint16(), 2),
      (pa.int32(), 4),
      (pa.uint32(), 4),
      (pa.int64(), 8),
      (pa.uint64(), 8),
      (pa.float32(), 4),
      (pa.float64(), 8),
  ]:
    result.append(
        dict(
            testcase_name=str(array_type),
            array=pa.array(range(9), type=array_type),
            slice_offset=2,
            slice_length=3,
            expected_size=(_all_false_null_bitmap_size(2) + sizeof * 9),
            expected_sliced_size=(_all_false_null_bitmap_size(1) + sizeof * 3)))
  return result 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:25,代碼來源:array_util_test.py

示例5: _GetExpectedColumnValues

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float32 [as 別名]
def _GetExpectedColumnValues(tfxio):
  if tfxio._can_produce_large_types:
    list_factory = pa.large_list
    bytes_type = pa.large_binary()
  else:
    list_factory = pa.list_
    bytes_type = pa.binary()

  return {
      path.ColumnPath(["int_feature"]):
          pa.array([[1], [2], [3]], type=list_factory(pa.int64())),
      path.ColumnPath(["float_feature"]):
          pa.array([[1, 2, 3, 4], [2, 3, 4, 5], None],
                   type=list_factory(pa.float32())),
      path.ColumnPath([_SEQUENCE_COLUMN_NAME, "int_feature"]):
          pa.array([[[1, 2], [3]], None, [[4]]],
                   list_factory(list_factory(pa.int64()))),
      path.ColumnPath([_SEQUENCE_COLUMN_NAME, "string_feature"]):
          pa.array([None, [[b"foo", b"bar"], []], [[b"baz"]]],
                   list_factory(list_factory(bytes_type)))
  } 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:23,代碼來源:tf_sequence_example_record_test.py

示例6: get_pyarrow_types

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float32 [as 別名]
def get_pyarrow_types():
    return {
        'bool': PA_BOOL,
        'float32': PA_FLOAT32,
        'float64': PA_FLOAT64,
        'int8': PA_INT8,
        'int16': PA_INT16,
        'int32': PA_INT32,
        'int64': PA_INT64,
        'string': PA_STRING,
        'timestamp': PA_TIMESTAMP,
        'base64': PA_BINARY
    }

# pylint: disable=too-many-branches,too-many-statements 
開發者ID:cldellow,項目名稱:csv2parquet,代碼行數:17,代碼來源:csv2parquet.py

示例7: setUp

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float32 [as 別名]
def setUp(self):
        self.sa_meta = sa.MetaData()
        self.data = [
            [17.124, 1.12, 3.14, 13.37],
            [1, 2, 3, 4],
            [1, 2, 3, 4],
            [1, 2, 3, 4],
            [True, None, False, True],
            ['string 1', 'string 2', None, 'string 3'],
            [datetime(2007, 7, 13, 1, 23, 34, 123456),
             None,
             datetime(2006, 1, 13, 12, 34, 56, 432539),
             datetime(2010, 8, 13, 5, 46, 57, 437699), ],
            ["Test Text", "Some#More#Test#  Text", "!@#$%%^&*&", None],
        ]
        self.table = sa.Table(
            'unit_test_table',
            self.sa_meta,
            sa.Column('real_col', sa.REAL),
            sa.Column('bigint_col', sa.BIGINT),
            sa.Column('int_col', sa.INTEGER),
            sa.Column('smallint_col', sa.SMALLINT),
            sa.Column('bool_col', sa.BOOLEAN),
            sa.Column('str_col', sa.VARCHAR),
            sa.Column('timestamp_col', sa.TIMESTAMP),
            sa.Column('plaintext_col', sa.TEXT),
        )

        self.expected_datatypes = [
            pa.float32(),
            pa.int64(),
            pa.int32(),
            pa.int16(),
            pa.bool_(),
            pa.string(),
            pa.timestamp('ns'),
            pa.string(),
        ] 
開發者ID:hellonarrativ,項目名稱:spectrify,代碼行數:40,代碼來源:test_parquet.py

示例8: test_dict_to_spark_row_field_validation_ndarrays

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float32 [as 別名]
def test_dict_to_spark_row_field_validation_ndarrays():
    """Test various validations done on data types when converting a dictionary to a spark row"""
    TestSchema = Unischema('TestSchema', [
        UnischemaField('tensor3d', np.float32, (10, 20, 30), NdarrayCodec(), False),
    ])

    assert isinstance(dict_to_spark_row(TestSchema, {'tensor3d': np.zeros((10, 20, 30), dtype=np.float32)}), Row)

    # Null value into not nullable field
    with pytest.raises(ValueError):
        isinstance(dict_to_spark_row(TestSchema, {'string_field': None}), Row)

    # Wrong dimensions
    with pytest.raises(ValueError):
        isinstance(dict_to_spark_row(TestSchema, {'string_field': np.zeros((1, 2, 3), dtype=np.float32)}), Row) 
開發者ID:uber,項目名稱:petastorm,代碼行數:17,代碼來源:test_unischema.py

示例9: test_make_named_tuple

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float32 [as 別名]
def test_make_named_tuple():
    TestSchema = Unischema('TestSchema', [
        UnischemaField('string_scalar', np.string_, (), ScalarCodec(StringType()), True),
        UnischemaField('int32_scalar', np.int32, (), ScalarCodec(ShortType()), False),
        UnischemaField('uint8_scalar', np.uint8, (), ScalarCodec(ShortType()), False),
        UnischemaField('int32_matrix', np.float32, (10, 20, 3), NdarrayCodec(), True),
        UnischemaField('decimal_scalar', Decimal, (10, 20, 3), ScalarCodec(DecimalType(10, 9)), False),
    ])

    TestSchema.make_namedtuple(string_scalar='abc', int32_scalar=10, uint8_scalar=20,
                               int32_matrix=np.int32((10, 20, 3)), decimal_scalar=Decimal(123) / Decimal(10))

    TestSchema.make_namedtuple(string_scalar=None, int32_scalar=10, uint8_scalar=20,
                               int32_matrix=None, decimal_scalar=Decimal(123) / Decimal(10)) 
開發者ID:uber,項目名稱:petastorm,代碼行數:16,代碼來源:test_unischema.py

示例10: test_arrow_schema_convertion

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float32 [as 別名]
def test_arrow_schema_convertion():
    fields = [
        pa.field('string', pa.string()),
        pa.field('int8', pa.int8()),
        pa.field('int16', pa.int16()),
        pa.field('int32', pa.int32()),
        pa.field('int64', pa.int64()),
        pa.field('float', pa.float32()),
        pa.field('double', pa.float64()),
        pa.field('bool', pa.bool_(), False),
        pa.field('fixed_size_binary', pa.binary(10)),
        pa.field('variable_size_binary', pa.binary()),
        pa.field('decimal', pa.decimal128(3, 4)),
        pa.field('timestamp_s', pa.timestamp('s')),
        pa.field('timestamp_ns', pa.timestamp('ns')),
        pa.field('date_32', pa.date32()),
        pa.field('date_64', pa.date64())
    ]
    arrow_schema = pa.schema(fields)

    mock_dataset = _mock_parquet_dataset([], arrow_schema)

    unischema = Unischema.from_arrow_schema(mock_dataset)
    for name in arrow_schema.names:
        assert getattr(unischema, name).name == name
        assert getattr(unischema, name).codec is None

        if name == 'bool':
            assert not getattr(unischema, name).nullable
        else:
            assert getattr(unischema, name).nullable

    # Test schema preserve fields order
    field_name_list = [f.name for f in fields]
    assert list(unischema.fields.keys()) == field_name_list 
開發者ID:uber,項目名稱:petastorm,代碼行數:37,代碼來源:test_unischema.py

示例11: to_arrow_type

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float32 [as 別名]
def to_arrow_type(dt):
    """ Convert Spark data type to pyarrow type
    """
    from distutils.version import LooseVersion
    import pyarrow as pa
    if type(dt) == BooleanType:
        arrow_type = pa.bool_()
    elif type(dt) == ByteType:
        arrow_type = pa.int8()
    elif type(dt) == ShortType:
        arrow_type = pa.int16()
    elif type(dt) == IntegerType:
        arrow_type = pa.int32()
    elif type(dt) == LongType:
        arrow_type = pa.int64()
    elif type(dt) == FloatType:
        arrow_type = pa.float32()
    elif type(dt) == DoubleType:
        arrow_type = pa.float64()
    elif type(dt) == DecimalType:
        arrow_type = pa.decimal128(dt.precision, dt.scale)
    elif type(dt) == StringType:
        arrow_type = pa.string()
    elif type(dt) == BinaryType:
        # TODO: remove version check once minimum pyarrow version is 0.10.0
        if LooseVersion(pa.__version__) < LooseVersion("0.10.0"):
            raise TypeError("Unsupported type in conversion to Arrow: " + str(dt) +
                            "\nPlease install pyarrow >= 0.10.0 for BinaryType support.")
        arrow_type = pa.binary()
    elif type(dt) == DateType:
        arrow_type = pa.date32()
    elif type(dt) == TimestampType:
        # Timestamps should be in UTC, JVM Arrow timestamps require a timezone to be read
        arrow_type = pa.timestamp('us', tz='UTC')
    elif type(dt) == ArrayType:
        if type(dt.elementType) == TimestampType:
            raise TypeError("Unsupported type in conversion to Arrow: " + str(dt))
        arrow_type = pa.list_(to_arrow_type(dt.elementType))
    else:
        raise TypeError("Unsupported type in conversion to Arrow: " + str(dt))
    return arrow_type 
開發者ID:runawayhorse001,項目名稱:LearningApacheSpark,代碼行數:43,代碼來源:types.py

示例12: test_select_ipc_parametrized

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float32 [as 別名]
def test_select_ipc_parametrized(self, con, query, parameters):

        c = con.cursor()
        c.execute('drop table if exists stocks;')
        create = (
            'create table stocks (date_ text, trans text, symbol text, '
            'qty int, price float, vol float);'
        )
        c.execute(create)
        i1 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','RHAT',100,35.14,1.1);"  # noqa
        i2 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','GOOG',100,12.14,1.2);"  # noqa

        c.execute(i1)
        c.execute(i2)

        result = con.select_ipc(query, parameters=parameters)
        expected = pd.DataFrame(
            {
                "qty": np.array([100, 100], dtype=np.int32),
                "price": np.array(
                    [35.13999938964844, 12.140000343322754], dtype=np.float32
                ),
            }
        )[['qty', 'price']]
        tm.assert_frame_equal(result, expected)
        c.execute('drop table if exists stocks;') 
開發者ID:omnisci,項目名稱:pymapd,代碼行數:28,代碼來源:test_integration.py

示例13: test_select_ipc_gpu

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float32 [as 別名]
def test_select_ipc_gpu(self, con, query, parameters):

        from cudf.core.dataframe import DataFrame

        c = con.cursor()
        c.execute('drop table if exists stocks;')
        create = (
            'create table stocks (date_ text, trans text, symbol text, '
            'qty int, price float, vol float);'
        )
        c.execute(create)
        i1 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','RHAT',100,35.14,1.1);"  # noqa
        i2 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','GOOG',100,12.14,1.2);"  # noqa

        c.execute(i1)
        c.execute(i2)

        result = con.select_ipc_gpu("select qty, price from stocks")
        assert isinstance(result, DataFrame)

        dtypes = dict(qty=np.int32, price=np.float32)
        expected = pd.DataFrame(
            [[100, 35.14], [100, 12.14]], columns=['qty', 'price']
        ).astype(dtypes)

        result = result.to_pandas()[['qty', 'price']]  # column order
        pd.testing.assert_frame_equal(result, expected)
        c.execute('drop table if exists stocks;') 
開發者ID:omnisci,項目名稱:pymapd,代碼行數:30,代碼來源:test_integration.py

示例14: test_load_infer

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float32 [as 別名]
def test_load_infer(self, con):

        con.execute("drop table if exists baz;")
        con.execute("create table baz (a int, b float, c text);")

        data = pd.DataFrame(
            {
                'a': np.array([0, 1], dtype=np.int32),
                'b': np.array([1.1, 2.2], dtype=np.float32),
                'c': ['a', 'b'],
            }
        )
        con.load_table("baz", data)
        con.execute("drop table if exists baz;") 
開發者ID:omnisci,項目名稱:pymapd,代碼行數:16,代碼來源:test_integration.py

示例15: test_load_table_creates

# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import float32 [as 別名]
def test_load_table_creates(self, con):

        data = pd.DataFrame(
            {
                "boolean_": [True, False],
                "smallint_cast": np.array([0, 1], dtype=np.int8),
                "smallint_": np.array([0, 1], dtype=np.int16),
                "int_": np.array([0, 1], dtype=np.int32),
                "bigint_": np.array([0, 1], dtype=np.int64),
                "float_": np.array([0, 1], dtype=np.float32),
                "double_": np.array([0, 1], dtype=np.float64),
                "varchar_": ["a", "b"],
                "text_": ['a', 'b'],
                "time_": [datetime.time(0, 11, 59), datetime.time(13)],
                "timestamp_": [pd.Timestamp("2016"), pd.Timestamp("2017")],
                "date_": [
                    datetime.date(2016, 1, 1),
                    datetime.date(2017, 1, 1),
                ],
            },
            columns=[
                'boolean_',
                'smallint_',
                'int_',
                'bigint_',
                'float_',
                'double_',
                'varchar_',
                'text_',
                'time_',
                'timestamp_',
                'date_',
            ],
        )

        con.execute("drop table if exists test_load_table_creates;")
        con.load_table("test_load_table_creates", data, create=True)
        con.execute("drop table if exists test_load_table_creates;") 
開發者ID:omnisci,項目名稱:pymapd,代碼行數:40,代碼來源:test_integration.py


注:本文中的pyarrow.float32方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。