本文整理匯總了Python中pyarrow.date32方法的典型用法代碼示例。如果您正苦於以下問題:Python pyarrow.date32方法的具體用法?Python pyarrow.date32怎麽用?Python pyarrow.date32使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pyarrow
的用法示例。
在下文中一共展示了pyarrow.date32方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_iterate_over_date_chunk
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import date32 [as 別名]
def test_iterate_over_date_chunk():
random.seed(datetime.datetime.now())
column_meta = {
"byteLength": "4",
"logicalType": "DATE",
"precision": "38",
"scale": "0",
"charLength": "0"
}
def date_generator():
return datetime.date.fromordinal(random.randint(1, 1000000))
iterate_over_test_chunk([pyarrow.date32(), pyarrow.date32()],
[column_meta, column_meta],
date_generator)
示例2: test_index_as_flat_series_date
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import date32 [as 別名]
def test_index_as_flat_series_date(dtype, date_as_object):
index1 = ExplicitSecondaryIndex(
column="col",
index_dct={
datetime.date(2017, 1, 2): ["part_1", "part_2"],
datetime.date(2018, 2, 3): ["part_1"],
},
dtype=pa.date32(),
)
ser = index1.as_flat_series(date_as_object=date_as_object)
ser = ser.sort_index()
expected = pd.Series(
["part_1", "part_2", "part_1"],
index=pd.Index(
[
datetime.date(2017, 1, 2),
datetime.date(2017, 1, 2),
datetime.date(2018, 2, 3),
],
dtype=dtype,
name="col",
),
name="partition",
)
assert_series_equal(ser, expected)
示例3: test_arrow_schema_convertion
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import date32 [as 別名]
def test_arrow_schema_convertion():
fields = [
pa.field('string', pa.string()),
pa.field('int8', pa.int8()),
pa.field('int16', pa.int16()),
pa.field('int32', pa.int32()),
pa.field('int64', pa.int64()),
pa.field('float', pa.float32()),
pa.field('double', pa.float64()),
pa.field('bool', pa.bool_(), False),
pa.field('fixed_size_binary', pa.binary(10)),
pa.field('variable_size_binary', pa.binary()),
pa.field('decimal', pa.decimal128(3, 4)),
pa.field('timestamp_s', pa.timestamp('s')),
pa.field('timestamp_ns', pa.timestamp('ns')),
pa.field('date_32', pa.date32()),
pa.field('date_64', pa.date64())
]
arrow_schema = pa.schema(fields)
mock_dataset = _mock_parquet_dataset([], arrow_schema)
unischema = Unischema.from_arrow_schema(mock_dataset)
for name in arrow_schema.names:
assert getattr(unischema, name).name == name
assert getattr(unischema, name).codec is None
if name == 'bool':
assert not getattr(unischema, name).nullable
else:
assert getattr(unischema, name).nullable
# Test schema preserve fields order
field_name_list = [f.name for f in fields]
assert list(unischema.fields.keys()) == field_name_list
示例4: to_arrow_type
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import date32 [as 別名]
def to_arrow_type(dt):
""" Convert Spark data type to pyarrow type
"""
from distutils.version import LooseVersion
import pyarrow as pa
if type(dt) == BooleanType:
arrow_type = pa.bool_()
elif type(dt) == ByteType:
arrow_type = pa.int8()
elif type(dt) == ShortType:
arrow_type = pa.int16()
elif type(dt) == IntegerType:
arrow_type = pa.int32()
elif type(dt) == LongType:
arrow_type = pa.int64()
elif type(dt) == FloatType:
arrow_type = pa.float32()
elif type(dt) == DoubleType:
arrow_type = pa.float64()
elif type(dt) == DecimalType:
arrow_type = pa.decimal128(dt.precision, dt.scale)
elif type(dt) == StringType:
arrow_type = pa.string()
elif type(dt) == BinaryType:
# TODO: remove version check once minimum pyarrow version is 0.10.0
if LooseVersion(pa.__version__) < LooseVersion("0.10.0"):
raise TypeError("Unsupported type in conversion to Arrow: " + str(dt) +
"\nPlease install pyarrow >= 0.10.0 for BinaryType support.")
arrow_type = pa.binary()
elif type(dt) == DateType:
arrow_type = pa.date32()
elif type(dt) == TimestampType:
# Timestamps should be in UTC, JVM Arrow timestamps require a timezone to be read
arrow_type = pa.timestamp('us', tz='UTC')
elif type(dt) == ArrayType:
if type(dt.elementType) == TimestampType:
raise TypeError("Unsupported type in conversion to Arrow: " + str(dt))
arrow_type = pa.list_(to_arrow_type(dt.elementType))
else:
raise TypeError("Unsupported type in conversion to Arrow: " + str(dt))
return arrow_type
示例5: test_bq_to_arrow_data_type_w_struct
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import date32 [as 別名]
def test_bq_to_arrow_data_type_w_struct(module_under_test, bq_type):
fields = (
schema.SchemaField("field01", "STRING"),
schema.SchemaField("field02", "BYTES"),
schema.SchemaField("field03", "INTEGER"),
schema.SchemaField("field04", "INT64"),
schema.SchemaField("field05", "FLOAT"),
schema.SchemaField("field06", "FLOAT64"),
schema.SchemaField("field07", "NUMERIC"),
schema.SchemaField("field08", "BOOLEAN"),
schema.SchemaField("field09", "BOOL"),
schema.SchemaField("field10", "TIMESTAMP"),
schema.SchemaField("field11", "DATE"),
schema.SchemaField("field12", "TIME"),
schema.SchemaField("field13", "DATETIME"),
schema.SchemaField("field14", "GEOGRAPHY"),
)
field = schema.SchemaField("ignored_name", bq_type, mode="NULLABLE", fields=fields)
actual = module_under_test.bq_to_arrow_data_type(field)
expected = pyarrow.struct(
(
pyarrow.field("field01", pyarrow.string()),
pyarrow.field("field02", pyarrow.binary()),
pyarrow.field("field03", pyarrow.int64()),
pyarrow.field("field04", pyarrow.int64()),
pyarrow.field("field05", pyarrow.float64()),
pyarrow.field("field06", pyarrow.float64()),
pyarrow.field("field07", module_under_test.pyarrow_numeric()),
pyarrow.field("field08", pyarrow.bool_()),
pyarrow.field("field09", pyarrow.bool_()),
pyarrow.field("field10", module_under_test.pyarrow_timestamp()),
pyarrow.field("field11", pyarrow.date32()),
pyarrow.field("field12", module_under_test.pyarrow_time()),
pyarrow.field("field13", module_under_test.pyarrow_datetime()),
pyarrow.field("field14", pyarrow.string()),
)
)
assert pyarrow.types.is_struct(actual)
assert actual.num_children == len(fields)
assert actual.equals(expected)
示例6: test_bq_to_arrow_data_type_w_array_struct
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import date32 [as 別名]
def test_bq_to_arrow_data_type_w_array_struct(module_under_test, bq_type):
fields = (
schema.SchemaField("field01", "STRING"),
schema.SchemaField("field02", "BYTES"),
schema.SchemaField("field03", "INTEGER"),
schema.SchemaField("field04", "INT64"),
schema.SchemaField("field05", "FLOAT"),
schema.SchemaField("field06", "FLOAT64"),
schema.SchemaField("field07", "NUMERIC"),
schema.SchemaField("field08", "BOOLEAN"),
schema.SchemaField("field09", "BOOL"),
schema.SchemaField("field10", "TIMESTAMP"),
schema.SchemaField("field11", "DATE"),
schema.SchemaField("field12", "TIME"),
schema.SchemaField("field13", "DATETIME"),
schema.SchemaField("field14", "GEOGRAPHY"),
)
field = schema.SchemaField("ignored_name", bq_type, mode="REPEATED", fields=fields)
actual = module_under_test.bq_to_arrow_data_type(field)
expected_value_type = pyarrow.struct(
(
pyarrow.field("field01", pyarrow.string()),
pyarrow.field("field02", pyarrow.binary()),
pyarrow.field("field03", pyarrow.int64()),
pyarrow.field("field04", pyarrow.int64()),
pyarrow.field("field05", pyarrow.float64()),
pyarrow.field("field06", pyarrow.float64()),
pyarrow.field("field07", module_under_test.pyarrow_numeric()),
pyarrow.field("field08", pyarrow.bool_()),
pyarrow.field("field09", pyarrow.bool_()),
pyarrow.field("field10", module_under_test.pyarrow_timestamp()),
pyarrow.field("field11", pyarrow.date32()),
pyarrow.field("field12", module_under_test.pyarrow_time()),
pyarrow.field("field13", module_under_test.pyarrow_datetime()),
pyarrow.field("field14", pyarrow.string()),
)
)
assert pyarrow.types.is_list(actual)
assert pyarrow.types.is_struct(actual.value_type)
assert actual.value_type.num_children == len(fields)
assert actual.value_type.equals(expected_value_type)
示例7: _get_numba_typ_from_pa_typ
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import date32 [as 別名]
def _get_numba_typ_from_pa_typ(pa_typ):
import pyarrow as pa
_typ_map = {
# boolean
pa.bool_(): types.bool_,
# signed int types
pa.int8(): types.int8,
pa.int16(): types.int16,
pa.int32(): types.int32,
pa.int64(): types.int64,
# unsigned int types
pa.uint8(): types.uint8,
pa.uint16(): types.uint16,
pa.uint32(): types.uint32,
pa.uint64(): types.uint64,
# float types (TODO: float16?)
pa.float32(): types.float32,
pa.float64(): types.float64,
# String
pa.string(): string_type,
# date
pa.date32(): types.NPDatetime('ns'),
pa.date64(): types.NPDatetime('ns'),
# time (TODO: time32, time64, ...)
pa.timestamp('ns'): types.NPDatetime('ns'),
pa.timestamp('us'): types.NPDatetime('ns'),
pa.timestamp('ms'): types.NPDatetime('ns'),
pa.timestamp('s'): types.NPDatetime('ns'),
}
if pa_typ not in _typ_map:
raise ValueError("Arrow data type {} not supported yet".format(pa_typ))
return _typ_map[pa_typ]
示例8: test_observed_values_date_as_object
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import date32 [as 別名]
def test_observed_values_date_as_object(date_as_object):
value = datetime.date(2020, 1, 1)
ind = ExplicitSecondaryIndex(
column="col", dtype=pa.date32(), index_dct={value: ["part_label"]}
)
observed = ind.observed_values(date_as_object=date_as_object)
if date_as_object:
expected = value
else:
expected = pd.Timestamp(value).to_datetime64()
assert len(observed) == 1
assert observed[0] == expected
示例9: test_date_conversion
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import date32 [as 別名]
def test_date_conversion():
"""
Test converting DATE columns to days since epoch
"""
schema = pa.schema([
pa.field("foo", pa.date32())
])
data = [{"foo": "2018-01-01"}, {"foo": "2018-01-02"}]
converted_data = client.ingest_data(data, schema)
assert converted_data.to_pydict()['foo'][0].strftime("%Y-%m-%d") == "2018-01-01"
assert converted_data.to_pydict()['foo'][1].strftime("%Y-%m-%d") == "2018-01-02"
示例10: test_store_schema_metadata
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import date32 [as 別名]
def test_store_schema_metadata(store, df_all_types):
store_schema_metadata(
schema=make_meta(df_all_types, origin="df_all_types"),
dataset_uuid="some_uuid",
store=store,
table="some_table",
)
key = "some_uuid/some_table/_common_metadata"
assert key in store.keys()
pq_file = pq.ParquetFile(store.open(key))
actual_schema = pq_file.schema.to_arrow_schema()
fields = [
pa.field("array_float32", pa.list_(pa.float64())),
pa.field("array_float64", pa.list_(pa.float64())),
pa.field("array_int16", pa.list_(pa.int64())),
pa.field("array_int32", pa.list_(pa.int64())),
pa.field("array_int64", pa.list_(pa.int64())),
pa.field("array_int8", pa.list_(pa.int64())),
pa.field("array_uint16", pa.list_(pa.uint64())),
pa.field("array_uint32", pa.list_(pa.uint64())),
pa.field("array_uint64", pa.list_(pa.uint64())),
pa.field("array_uint8", pa.list_(pa.uint64())),
pa.field("array_unicode", pa.list_(pa.string())),
pa.field("bool", pa.bool_()),
pa.field("byte", pa.binary()),
pa.field("date", pa.date32()),
pa.field("datetime64", pa.timestamp("us")),
pa.field("float32", pa.float64()),
pa.field("float64", pa.float64()),
pa.field("int16", pa.int64()),
pa.field("int32", pa.int64()),
pa.field("int64", pa.int64()),
pa.field("int8", pa.int64()),
pa.field("null", pa.null()),
pa.field("uint16", pa.uint64()),
pa.field("uint32", pa.uint64()),
pa.field("uint64", pa.uint64()),
pa.field("uint8", pa.uint64()),
pa.field("unicode", pa.string()),
]
expected_schema = pa.schema(fields)
assert actual_schema.remove_metadata() == expected_schema
示例11: _convert_data_with_schema
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import date32 [as 別名]
def _convert_data_with_schema(data, schema, date_format=None, field_aliases=None):
column_data = {}
array_data = []
schema_names = []
for row in data:
for column in schema.names:
_col = column_data.get(column, [])
_col.append(row.get(column))
column_data[column] = _col
for column in schema:
_col = column_data.get(column.name)
if isinstance(column.type, pa.lib.TimestampType):
_converted_col = []
for t in _col:
try:
_converted_col.append(pd.to_datetime(t, format=date_format))
except pd._libs.tslib.OutOfBoundsDatetime:
_converted_col.append(pd.Timestamp.max)
array_data.append(pa.Array.from_pandas(pd.to_datetime(_converted_col), type=pa.timestamp('ns')))
elif column.type.id == pa.date32().id:
_converted_col = map(_date_converter, _col)
array_data.append(pa.array(_converted_col, type=pa.date32()))
# Float types are ambiguous for conversions, need to specify the exact type
elif column.type.id == pa.float64().id:
array_data.append(pa.array(_col, type=pa.float64()))
elif column.type.id == pa.float32().id:
# Python doesn't have a native float32 type
# and PyArrow cannot cast float64 -> float32
_col = pd.to_numeric(_col, downcast='float')
array_data.append(pa.Array.from_pandas(_col, type=pa.float32()))
elif column.type.id == pa.int32().id:
# PyArrow 0.8.0 can cast int64 -> int32
_col64 = pa.array(_col, type=pa.int64())
array_data.append(_col64.cast(pa.int32()))
elif column.type.id == pa.bool_().id:
_col = map(_boolean_converter, _col)
array_data.append(pa.array(_col, type=column.type))
else:
array_data.append(pa.array(_col, type=column.type))
if isinstance(field_aliases, dict):
schema_names.append(field_aliases.get(column.name, column.name))
else:
schema_names.append(column.name)
return pa.RecordBatch.from_arrays(array_data, schema_names)