本文整理匯總了Python中pyarrow.bool_方法的典型用法代碼示例。如果您正苦於以下問題:Python pyarrow.bool_方法的具體用法?Python pyarrow.bool_怎麽用?Python pyarrow.bool_使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pyarrow
的用法示例。
在下文中一共展示了pyarrow.bool_方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: all_true_like
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import bool_ [as 別名]
def all_true_like(arr: pa.Array) -> pa.Array:
"""Return a boolean array with all-True with the same size as the input and the same valid bitmap."""
valid_buffer = arr.buffers()[0]
if valid_buffer:
valid_buffer = valid_buffer.slice(arr.offset // 8)
output_offset = arr.offset % 8
output_length = len(arr) + output_offset
output_size = output_length // 8
if output_length % 8 > 0:
output_size += 1
output = np.full(output_size, fill_value=255, dtype=np.uint8)
return pa.Array.from_buffers(
pa.bool_(),
len(arr),
[valid_buffer, pa.py_buffer(output)],
arr.null_count,
output_offset,
)
示例2: test_iterate_over_bool_chunk
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import bool_ [as 別名]
def test_iterate_over_bool_chunk():
random.seed(datetime.datetime.now())
column_meta = {"logicalType": "BOOLEAN"}
def bool_generator():
return bool(random.getrandbits(1))
iterate_over_test_chunk([pyarrow.bool_(), pyarrow.bool_()],
[column_meta, column_meta],
bool_generator)
示例3: __init__
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import bool_ [as 別名]
def __init__(self, values):
if not isinstance(values, pa.ChunkedArray):
raise ValueError
assert values.type == pa.bool_()
self._data = values
self._dtype = ArrowBoolDtype()
示例4: setUp
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import bool_ [as 別名]
def setUp(self):
self.sa_meta = sa.MetaData()
self.data = [
[17.124, 1.12, 3.14, 13.37],
[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4],
[True, None, False, True],
['string 1', 'string 2', None, 'string 3'],
[datetime(2007, 7, 13, 1, 23, 34, 123456),
None,
datetime(2006, 1, 13, 12, 34, 56, 432539),
datetime(2010, 8, 13, 5, 46, 57, 437699), ],
["Test Text", "Some#More#Test# Text", "!@#$%%^&*&", None],
]
self.table = sa.Table(
'unit_test_table',
self.sa_meta,
sa.Column('real_col', sa.REAL),
sa.Column('bigint_col', sa.BIGINT),
sa.Column('int_col', sa.INTEGER),
sa.Column('smallint_col', sa.SMALLINT),
sa.Column('bool_col', sa.BOOLEAN),
sa.Column('str_col', sa.VARCHAR),
sa.Column('timestamp_col', sa.TIMESTAMP),
sa.Column('plaintext_col', sa.TEXT),
)
self.expected_datatypes = [
pa.float32(),
pa.int64(),
pa.int32(),
pa.int16(),
pa.bool_(),
pa.string(),
pa.timestamp('ns'),
pa.string(),
]
示例5: test_arrow_schema_convertion
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import bool_ [as 別名]
def test_arrow_schema_convertion():
fields = [
pa.field('string', pa.string()),
pa.field('int8', pa.int8()),
pa.field('int16', pa.int16()),
pa.field('int32', pa.int32()),
pa.field('int64', pa.int64()),
pa.field('float', pa.float32()),
pa.field('double', pa.float64()),
pa.field('bool', pa.bool_(), False),
pa.field('fixed_size_binary', pa.binary(10)),
pa.field('variable_size_binary', pa.binary()),
pa.field('decimal', pa.decimal128(3, 4)),
pa.field('timestamp_s', pa.timestamp('s')),
pa.field('timestamp_ns', pa.timestamp('ns')),
pa.field('date_32', pa.date32()),
pa.field('date_64', pa.date64())
]
arrow_schema = pa.schema(fields)
mock_dataset = _mock_parquet_dataset([], arrow_schema)
unischema = Unischema.from_arrow_schema(mock_dataset)
for name in arrow_schema.names:
assert getattr(unischema, name).name == name
assert getattr(unischema, name).codec is None
if name == 'bool':
assert not getattr(unischema, name).nullable
else:
assert getattr(unischema, name).nullable
# Test schema preserve fields order
field_name_list = [f.name for f in fields]
assert list(unischema.fields.keys()) == field_name_list
示例6: to_arrow_type
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import bool_ [as 別名]
def to_arrow_type(dt):
""" Convert Spark data type to pyarrow type
"""
from distutils.version import LooseVersion
import pyarrow as pa
if type(dt) == BooleanType:
arrow_type = pa.bool_()
elif type(dt) == ByteType:
arrow_type = pa.int8()
elif type(dt) == ShortType:
arrow_type = pa.int16()
elif type(dt) == IntegerType:
arrow_type = pa.int32()
elif type(dt) == LongType:
arrow_type = pa.int64()
elif type(dt) == FloatType:
arrow_type = pa.float32()
elif type(dt) == DoubleType:
arrow_type = pa.float64()
elif type(dt) == DecimalType:
arrow_type = pa.decimal128(dt.precision, dt.scale)
elif type(dt) == StringType:
arrow_type = pa.string()
elif type(dt) == BinaryType:
# TODO: remove version check once minimum pyarrow version is 0.10.0
if LooseVersion(pa.__version__) < LooseVersion("0.10.0"):
raise TypeError("Unsupported type in conversion to Arrow: " + str(dt) +
"\nPlease install pyarrow >= 0.10.0 for BinaryType support.")
arrow_type = pa.binary()
elif type(dt) == DateType:
arrow_type = pa.date32()
elif type(dt) == TimestampType:
# Timestamps should be in UTC, JVM Arrow timestamps require a timezone to be read
arrow_type = pa.timestamp('us', tz='UTC')
elif type(dt) == ArrayType:
if type(dt.elementType) == TimestampType:
raise TypeError("Unsupported type in conversion to Arrow: " + str(dt))
arrow_type = pa.list_(to_arrow_type(dt.elementType))
else:
raise TypeError("Unsupported type in conversion to Arrow: " + str(dt))
return arrow_type
示例7: test_bq_to_arrow_data_type_w_struct
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import bool_ [as 別名]
def test_bq_to_arrow_data_type_w_struct(module_under_test, bq_type):
fields = (
schema.SchemaField("field01", "STRING"),
schema.SchemaField("field02", "BYTES"),
schema.SchemaField("field03", "INTEGER"),
schema.SchemaField("field04", "INT64"),
schema.SchemaField("field05", "FLOAT"),
schema.SchemaField("field06", "FLOAT64"),
schema.SchemaField("field07", "NUMERIC"),
schema.SchemaField("field08", "BOOLEAN"),
schema.SchemaField("field09", "BOOL"),
schema.SchemaField("field10", "TIMESTAMP"),
schema.SchemaField("field11", "DATE"),
schema.SchemaField("field12", "TIME"),
schema.SchemaField("field13", "DATETIME"),
schema.SchemaField("field14", "GEOGRAPHY"),
)
field = schema.SchemaField("ignored_name", bq_type, mode="NULLABLE", fields=fields)
actual = module_under_test.bq_to_arrow_data_type(field)
expected = pyarrow.struct(
(
pyarrow.field("field01", pyarrow.string()),
pyarrow.field("field02", pyarrow.binary()),
pyarrow.field("field03", pyarrow.int64()),
pyarrow.field("field04", pyarrow.int64()),
pyarrow.field("field05", pyarrow.float64()),
pyarrow.field("field06", pyarrow.float64()),
pyarrow.field("field07", module_under_test.pyarrow_numeric()),
pyarrow.field("field08", pyarrow.bool_()),
pyarrow.field("field09", pyarrow.bool_()),
pyarrow.field("field10", module_under_test.pyarrow_timestamp()),
pyarrow.field("field11", pyarrow.date32()),
pyarrow.field("field12", module_under_test.pyarrow_time()),
pyarrow.field("field13", module_under_test.pyarrow_datetime()),
pyarrow.field("field14", pyarrow.string()),
)
)
assert pyarrow.types.is_struct(actual)
assert actual.num_children == len(fields)
assert actual.equals(expected)
示例8: test_bq_to_arrow_data_type_w_array_struct
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import bool_ [as 別名]
def test_bq_to_arrow_data_type_w_array_struct(module_under_test, bq_type):
fields = (
schema.SchemaField("field01", "STRING"),
schema.SchemaField("field02", "BYTES"),
schema.SchemaField("field03", "INTEGER"),
schema.SchemaField("field04", "INT64"),
schema.SchemaField("field05", "FLOAT"),
schema.SchemaField("field06", "FLOAT64"),
schema.SchemaField("field07", "NUMERIC"),
schema.SchemaField("field08", "BOOLEAN"),
schema.SchemaField("field09", "BOOL"),
schema.SchemaField("field10", "TIMESTAMP"),
schema.SchemaField("field11", "DATE"),
schema.SchemaField("field12", "TIME"),
schema.SchemaField("field13", "DATETIME"),
schema.SchemaField("field14", "GEOGRAPHY"),
)
field = schema.SchemaField("ignored_name", bq_type, mode="REPEATED", fields=fields)
actual = module_under_test.bq_to_arrow_data_type(field)
expected_value_type = pyarrow.struct(
(
pyarrow.field("field01", pyarrow.string()),
pyarrow.field("field02", pyarrow.binary()),
pyarrow.field("field03", pyarrow.int64()),
pyarrow.field("field04", pyarrow.int64()),
pyarrow.field("field05", pyarrow.float64()),
pyarrow.field("field06", pyarrow.float64()),
pyarrow.field("field07", module_under_test.pyarrow_numeric()),
pyarrow.field("field08", pyarrow.bool_()),
pyarrow.field("field09", pyarrow.bool_()),
pyarrow.field("field10", module_under_test.pyarrow_timestamp()),
pyarrow.field("field11", pyarrow.date32()),
pyarrow.field("field12", module_under_test.pyarrow_time()),
pyarrow.field("field13", module_under_test.pyarrow_datetime()),
pyarrow.field("field14", pyarrow.string()),
)
)
assert pyarrow.types.is_list(actual)
assert pyarrow.types.is_struct(actual.value_type)
assert actual.value_type.num_children == len(fields)
assert actual.value_type.equals(expected_value_type)
示例9: test_read_parquet
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import bool_ [as 別名]
def test_read_parquet(tmpdir, continuous):
str_arr = pa.array(["a", None, "c"], pa.string())
int_arr = pa.array([1, None, -2], pa.int32())
bool_arr = pa.array([True, None, False], pa.bool_())
table = pa.Table.from_arrays([str_arr, int_arr, bool_arr], ["str", "int", "bool"])
pq.write_table(table, "df.parquet")
result = fr.read_parquet("df.parquet", continuous=continuous)
expected = fr.pandas_from_arrow(table, continuous=continuous)
tm.assert_frame_equal(result, expected)
示例10: test_any_op
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import bool_ [as 別名]
def test_any_op(data, skipna):
arrow = pa.array(data, type=pa.bool_())
# TODO(pandas-0.26): Use pandas.BooleanArray
# https://github.com/pandas-dev/pandas/issues/27709 / https://github.com/pandas-dev/pandas/issues/12863
pandas = pd.Series(data, dtype=float)
assert any_op(arrow, skipna) == pandas.any(skipna=skipna)
# Split in the middle and check whether this still works
if len(data) > 2:
arrow = pa.chunked_array(
[data[: len(data) // 2], data[len(data) // 2 :]], type=pa.bool_()
)
assert any_op(arrow, skipna) == pandas.any(skipna=skipna)
示例11: test_all_op
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import bool_ [as 別名]
def test_all_op(data, skipna):
arrow = pa.array(data, type=pa.bool_())
# https://github.com/pandas-dev/pandas/issues/27709 / https://github.com/pandas-dev/pandas/issues/12863
pandas = pd.Series(data, dtype=float)
assert all_op(arrow, skipna) == pandas.all(skipna=skipna)
# Split in the middle and check whether this still works
if len(data) > 2:
arrow = pa.chunked_array(
[data[: len(data) // 2], data[len(data) // 2 :]], type=pa.bool_()
)
assert all_op(arrow, skipna) == pandas.all(skipna=skipna)
示例12: test_contains_no_regex_ascii
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import bool_ [as 別名]
def test_contains_no_regex_ascii(data, pat, expected, fletcher_variant):
fr_series = _fr_series_from_data(data, fletcher_variant)
fr_expected = _fr_series_from_data(expected, fletcher_variant, pa.bool_())
# Run over slices to check offset handling code
for i in range(len(data)):
ser = fr_series.tail(len(data) - i)
expected = fr_expected.tail(len(data) - i)
result = ser.fr_text.contains(pat, regex=False)
tm.assert_series_equal(result, expected)
示例13: _text_contains_case_sensitive
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import bool_ [as 別名]
def _text_contains_case_sensitive(data: pa.Array, pat: str) -> pa.Array:
"""
Check for each element in the data whether it contains the pattern ``pat``.
This implementation does basic byte-by-byte comparison and is independent
of any locales or encodings.
"""
# Convert to UTF-8 bytes
pat_bytes: bytes = pat.encode()
# Initialise boolean (bit-packaed) output array.
output_size = len(data) // 8
if len(data) % 8 > 0:
output_size += 1
output = np.empty(output_size, dtype=np.uint8)
if len(data) % 8 > 0:
# Zero trailing bits
output[-1] = 0
offsets, data_buffer = _extract_string_buffers(data)
if data.null_count == 0:
valid_buffer = None
_text_contains_case_sensitive_nonnull(
len(data), offsets, data_buffer, pat_bytes, output
)
else:
valid = _buffer_to_view(data.buffers()[0])
_text_contains_case_sensitive_nulls(
len(data), valid, data.offset, offsets, data_buffer, pat_bytes, output
)
valid_buffer = data.buffers()[0].slice(data.offset // 8)
if data.offset % 8 != 0:
valid_buffer = shift_unaligned_bitmap(
valid_buffer, data.offset % 8, len(data)
)
return pa.Array.from_buffers(
pa.bool_(), len(data), [valid_buffer, pa.py_buffer(output)], data.null_count
)
示例14: all_true
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import bool_ [as 別名]
def all_true(arr: pa.Array) -> pa.Array:
"""Return a boolean array with all-True, all-valid with the same size ."""
output_length = len(arr) // 8
if len(arr) % 8 != 0:
output_length += 1
buf = pa.py_buffer(np.full(output_length, 255, dtype=np.uint8))
return pa.Array.from_buffers(pa.bool_(), len(arr), [buf, buf], 0)
示例15: or_array_nparray
# 需要導入模塊: import pyarrow [as 別名]
# 或者: from pyarrow import bool_ [as 別名]
def or_array_nparray(a: pa.Array, b: np.ndarray) -> pa.Array:
"""Perform ``pa.Array | np.ndarray``."""
output_length = len(a) // 8
if len(a) % 8 != 0:
output_length += 1
if a.null_count == 0:
result = np.zeros(output_length, dtype=np.uint8)
bitmap_or_unaligned_with_numpy_nonnull(
len(a), a.buffers()[1], a.offset, b, result
)
return pa.Array.from_buffers(
pa.bool_(), len(a), [None, pa.py_buffer(result)], 0
)
else:
result = np.zeros(output_length, dtype=np.uint8)
valid_bits = np.zeros(output_length, dtype=np.uint8)
null_count = bitmap_or_unaligned_with_numpy(
len(a), a.buffers()[0], a.buffers()[1], a.offset, b, result, valid_bits
)
return pa.Array.from_buffers(
pa.bool_(),
len(a),
[pa.py_buffer(valid_bits), pa.py_buffer(result)],
null_count,
)