當前位置: 首頁>>代碼示例>>Python>>正文


Python pyDOE.lhs方法代碼示例

本文整理匯總了Python中pyDOE.lhs方法的典型用法代碼示例。如果您正苦於以下問題:Python pyDOE.lhs方法的具體用法?Python pyDOE.lhs怎麽用?Python pyDOE.lhs使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pyDOE的用法示例。


在下文中一共展示了pyDOE.lhs方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_samples

# 需要導入模塊: import pyDOE [as 別名]
# 或者: from pyDOE import lhs [as 別名]
def get_samples(self, point_count: int) -> np.ndarray:
        """
        Generates requested amount of points.

        :param point_count: Number of points required.
        :return: A numpy array of generated samples, shape (point_count x space_dim)
        """
        bounds = self.parameter_space.get_bounds()
        X_design_aux = pyDOE.lhs(len(bounds), point_count, criterion='center')
        ones = np.ones((X_design_aux.shape[0], 1))

        lower_bound = np.asarray(bounds)[:, 0].reshape(1, len(bounds))
        upper_bound = np.asarray(bounds)[:, 1].reshape(1, len(bounds))
        diff = upper_bound - lower_bound

        X_design = np.dot(ones, lower_bound) + X_design_aux * np.dot(ones, diff)

        samples = self.parameter_space.round(X_design)

        return samples 
開發者ID:amzn,項目名稱:emukit,代碼行數:22,代碼來源:latin_design.py

示例2: _lhs_init

# 需要導入模塊: import pyDOE [as 別名]
# 或者: from pyDOE import lhs [as 別名]
def _lhs_init(par_names, bounds, samples, criterion='c'):
        """
        Returns LHS samples.

        :param par_names: List of parameter names
        :type par_names: list(str)
        :param bounds: List of lower/upper bounds,
                       must be of the same length as par_names
        :type bounds: list(tuple(float, float))
        :param int samples: Number of samples
        :param str criterion: A string that tells lhs how to sample the
                              points. See docs for pyDOE.lhs().
        :return: DataFrame
        """
        lhs = doe.lhs(len(par_names), samples=samples, criterion='c')
        par_vals = {}
        for par, i in zip(par_names, range(len(par_names))):
            par_min = bounds[i][0]
            par_max = bounds[i][1]
            par_vals[par] = lhs[:, i] * (par_max - par_min) + par_min

        # Convert dict(str: np.ndarray) to pd.DataFrame
        par_df = pd.DataFrame(columns=par_names, index=np.arange(samples))
        for i in range(samples):
            for p in par_names:
                par_df.loc[i, p] = par_vals[p][i]

        logger = logging.getLogger(GA.__name__)
        logger.info('Initial guess based on LHS:\n{}'.format(par_df))
        return par_df 
開發者ID:sdu-cfei,項目名稱:modest-py,代碼行數:32,代碼來源:ga.py

示例3: main_loop

# 需要導入模塊: import pyDOE [as 別名]
# 或者: from pyDOE import lhs [as 別名]
def main_loop(N_u, N_f, num_layers, num_neurons): 
     
    nu = 0.01/np.pi

    layers = np.concatenate([[2], num_neurons*np.ones(num_layers), [1]]).astype(int).tolist()    
    
    data = scipy.io.loadmat('../Data/burgers_shock.mat')
    
    t = data['t'].flatten()[:,None]
    x = data['x'].flatten()[:,None]
    Exact = np.real(data['usol']).T
    
    X, T = np.meshgrid(x,t)
    
    X_star = np.hstack((X.flatten()[:,None], T.flatten()[:,None]))
    u_star = Exact.flatten()[:,None]              

    # Doman bounds
    lb = X_star.min(0)
    ub = X_star.max(0)    
        
    xx1 = np.hstack((X[0:1,:].T, T[0:1,:].T))
    uu1 = Exact[0:1,:].T
    xx2 = np.hstack((X[:,0:1], T[:,0:1]))
    uu2 = Exact[:,0:1]
    xx3 = np.hstack((X[:,-1:], T[:,-1:]))
    uu3 = Exact[:,-1:]
    
    X_u_train = np.vstack([xx1, xx2, xx3])
    X_f_train = lb + (ub-lb)*lhs(2, N_f)
    X_f_train = np.vstack((X_f_train, X_u_train))
    u_train = np.vstack([uu1, uu2, uu3])
    
    idx = np.random.choice(X_u_train.shape[0], N_u, replace=False)
    X_u_train = X_u_train[idx, :]
    u_train = u_train[idx,:]
        
    model = PhysicsInformedNN(X_u_train, u_train, X_f_train, layers, lb, ub, nu)
    
    start_time = time.time()                
    model.train()
    elapsed = time.time() - start_time                
    print('Training time: %.4f' % (elapsed))
    
    u_pred, f_pred = model.predict(X_star)
            
    error_u = np.linalg.norm(u_star-u_pred,2)/np.linalg.norm(u_star,2)   
    
    return error_u 
開發者ID:maziarraissi,項目名稱:PINNs,代碼行數:51,代碼來源:Burgers_systematic.py

示例4: latin_sampler

# 需要導入模塊: import pyDOE [as 別名]
# 或者: from pyDOE import lhs [as 別名]
def latin_sampler(locator, num_samples, variables):
    """
    This script creates a matrix of m x n samples using the latin hypercube sampler.
    for this, it uses the database of probability distribtutions stored in locator.get_uncertainty_db()

    :param locator: pointer to locator of files of CEA
    :param num_samples: number of samples to do
    :param variables: list of variables to sample
    :return:
        1. design: a matrix m x n with the samples
        2. pdf_list: a dataframe with properties of the probability density functions used in the excercise.
    """


    # get probability density function PDF of variables of interest
    variable_groups = ('ENVELOPE', 'INDOOR_COMFORT', 'INTERNAL_LOADS')
    database = pd.concat([pd.read_excel(locator.get_uncertainty_db(), group, axis=1)
                                                for group in variable_groups])
    pdf_list = database[database['name'].isin(variables)].set_index('name')

    # get number of variables
    num_vars = pdf_list.shape[0] #alternatively use len(variables)

    # get design of experiments
    design = lhs(num_vars, samples=num_samples)
    for i, variable in enumerate(variables):
        distribution = pdf_list.loc[variable, 'distribution']
        min = pdf_list.loc[variable,'min']
        max = pdf_list.loc[variable,'max']
        mu = pdf_list.loc[variable,'mu']
        stdv = pdf_list.loc[variable,'stdv']
        if distribution == 'triangular':
            loc = min
            scale = max - min
            c = (mu - min) / (max - min)
            design[:, i] = triang(loc=loc, c=c, scale=scale).ppf(design[:, i])
        elif distribution == 'normal':
            design[:, i] = norm(loc=mu, scale=stdv).ppf(design[:, i])
        else: # assume it is uniform
            design[:, i] = uniform(loc=min, scale=max).ppf(design[:, i])

    return design, pdf_list 
開發者ID:architecture-building-systems,項目名稱:CityEnergyAnalyst,代碼行數:44,代碼來源:surrogate_4_calibration.py


注:本文中的pyDOE.lhs方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。