本文整理匯總了Python中pulp.LpMinimize方法的典型用法代碼示例。如果您正苦於以下問題:Python pulp.LpMinimize方法的具體用法?Python pulp.LpMinimize怎麽用?Python pulp.LpMinimize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pulp
的用法示例。
在下文中一共展示了pulp.LpMinimize方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: label_prop
# 需要導入模塊: import pulp [as 別名]
# 或者: from pulp import LpMinimize [as 別名]
def label_prop(C, nt, Dct, lp="linear"):
#Inputs:
# C : Number of share classes between src and tar
# nt : Number of target domain samples
# Dct : All d_ct in matrix form, nt * C
# lp : Type of linear programming: linear (default) | binary
#Outputs:
# Mcj : all M_ct in matrix form, m * C
Dct = abs(Dct)
model = pulp.LpProblem("Cost minimising problem", pulp.LpMinimize)
Mcj = pulp.LpVariable.dicts("Probability",
((i, j) for i in range(C) for j in range(nt)),
lowBound=0,
upBound=1,
cat='Continuous')
# Objective Function
model += (
pulp.lpSum([Dct[j, i]*Mcj[(i, j)] for i in range(C) for j in range(nt)])
)
# Constraints
for j in range(nt):
model += pulp.lpSum([Mcj[(i, j)] for i in range(C)]) == 1
for i in range(C):
model += pulp.lpSum([Mcj[(i, j)] for j in range(nt)]) >= 1
# Solve our problem
model.solve()
pulp.LpStatus[model.status]
Output = [[Mcj[i, j].varValue for i in range(C)] for j in range(nt)]
return np.array(Output)
示例2: __init__
# 需要導入模塊: import pulp [as 別名]
# 或者: from pulp import LpMinimize [as 別名]
def __init__(self, input_data, input_params):
self.input_data = input_data
self.input_params = input_params
self.model = pulp.LpProblem(name='prod_planning', sense=pulp.LpMinimize)
self._create_decision_variables()
self._create_main_constraints()
self._set_objective_function()
# ================== Decision variables ==================
示例3: create_model
# 需要導入模塊: import pulp [as 別名]
# 或者: from pulp import LpMinimize [as 別名]
def create_model(self):
def distances(assignment):
return l2_distance(self.data[assignment[0]], self.centroids[assignment[1]])
clusters = list(range(self.k))
assignments = [(i, j)for i in range(self.n) for j in range(self.k)]
# outflow variables for data nodes
self.y = pulp.LpVariable.dicts('data-to-cluster assignments',
assignments,
lowBound=0,
upBound=1,
cat=pulp.LpInteger)
# outflow variables for cluster nodes
self.b = pulp.LpVariable.dicts('cluster outflows',
clusters,
lowBound=0,
upBound=self.n-self.min_size,
cat=pulp.LpContinuous)
# create the model
self.model = pulp.LpProblem("Model for assignment subproblem", pulp.LpMinimize)
# objective function
self.model += pulp.lpSum(distances(assignment) * self.y[assignment] for assignment in assignments)
# flow balance constraints for data nodes
for i in range(self.n):
self.model += pulp.lpSum(self.y[(i, j)] for j in range(self.k)) == 1
# flow balance constraints for cluster nodes
for j in range(self.k):
self.model += pulp.lpSum(self.y[(i, j)] for i in range(self.n)) - self.min_size == self.b[j]
# flow balance constraint for the sink node
self.model += pulp.lpSum(self.b[j] for j in range(self.k)) == self.n - (self.k * self.min_size)
示例4: create_model
# 需要導入模塊: import pulp [as 別名]
# 或者: from pulp import LpMinimize [as 別名]
def create_model(self):
def distances(assignment):
return l2_distance(self.data[assignment[0]], self.centroids[assignment[1]])
clusters = list(range(self.k))
assignments = [(i, j)for i in range(self.n) for j in range(self.k)]
# outflow variables for data nodes
self.y = pulp.LpVariable.dicts('data-to-cluster assignments',
assignments,
lowBound=0,
upBound=1,
cat=pulp.LpInteger)
# outflow variables for cluster nodes
self.b = pulp.LpVariable.dicts('cluster outflows',
clusters,
lowBound=0,
upBound=self.n-self.min_size,
cat=pulp.LpContinuous)
# create the model
self.model = pulp.LpProblem("Model for assignment subproblem", pulp.LpMinimize)
# objective function
self.model += pulp.lpSum([distances(assignment) * self.y[assignment] for assignment in assignments])
# flow balance constraints for data nodes
for i in range(self.n):
self.model += pulp.lpSum(self.y[(i, j)] for j in range(self.k)) == 1
# flow balance constraints for cluster nodes
for j in range(self.k):
self.model += pulp.lpSum(self.y[(i, j)] for i in range(self.n)) - self.min_size == self.b[j]
# capacity constraint on outflow of cluster nodes
for j in range(self.k):
self.model += self.b[j] <= self.max_size - self.min_size
# flow balance constraint for the sink node
self.model += pulp.lpSum(self.b[j] for j in range(self.k)) == self.n - (self.k * self.min_size)
示例5: create_model
# 需要導入模塊: import pulp [as 別名]
# 或者: from pulp import LpMinimize [as 別名]
def create_model(self):
def distances(assignment):
return l2_distance(self.data[assignment[0]], self.centroids[assignment[1]])
assignments = [(i, j) for i in range(self.n) for j in range(self.k)]
# assignment variables
self.y = pulp.LpVariable.dicts('data-to-cluster assignments',
assignments,
lowBound=0,
upBound=1,
cat=pulp.LpInteger)
# create the model
self.model = pulp.LpProblem("Model for assignment subproblem", pulp.LpMinimize)
# objective function
self.model += pulp.lpSum([distances(assignment) * self.weights[assignment[0]] * self.y[assignment] for assignment in assignments]), 'Objective Function - sum weighted squared distances to assigned centroid'
# this is also weighted, otherwise the weighted centroid computation don't make sense.
# constraints on the total weights of clusters
for j in range(self.k):
self.model += pulp.lpSum([self.weights[i] * self.y[(i, j)] for i in range(self.n)]) >= self.min_weight, "minimum weight for cluster {}".format(j)
self.model += pulp.lpSum([self.weights[i] * self.y[(i, j)] for i in range(self.n)]) <= self.max_weight, "maximum weight for cluster {}".format(j)
# make sure each point is assigned at least once, and only once
for i in range(self.n):
self.model += pulp.lpSum([self.y[(i, j)] for j in range(self.k)]) == 1, "must assign point {}".format(i)
示例6: _gclp
# 需要導入模塊: import pulp [as 別名]
# 或者: from pulp import LpMinimize [as 別名]
def _gclp(self, composition={}, mus={}, phases=[]):
if not qmpy.FOUND_PULP:
raise Exception('Cannot do GCLP without installing PuLP and an LP',
'solver')
prob = pulp.LpProblem('GibbsEnergyMin', pulp.LpMinimize)
phase_vars = pulp.LpVariable.dicts('lib', phases, 0.0)
prob += pulp.lpSum([ (p.energy -
sum([ p.unit_comp.get(elt,0)*mu
for elt, mu in mus.items() ])) * phase_vars[p]
for p in phases]),\
"Free Energy"
for elt, constraint in composition.items():
prob += pulp.lpSum([
p.unit_comp.get(elt,0)*phase_vars[p]
for p in phases ]) == float(constraint),\
'Conservation of '+elt
##[vh]
##print prob
if pulp.GUROBI().available():
prob.solve(pulp.GUROBI(msg=False))
elif pulp.COIN_CMD().available():
prob.solve(pulp.COIN_CMD())
else:
prob.solve()
phase_comp = dict([ (p, phase_vars[p].varValue)
for p in phases if phase_vars[p].varValue > 1e-5])
energy = sum( p.energy*amt for p, amt in phase_comp.items() )
energy -= sum([ a*composition.get(e, 0) for e,a in mus.items()])
return energy, phase_comp
示例7: get_minima
# 需要導入模塊: import pulp [as 別名]
# 或者: from pulp import LpMinimize [as 別名]
def get_minima(self, phases, bounds):
"""
Given a set of Phases, get_minima will determine the minimum
free energy elemental composition as a weighted sum of these
compounds
"""
prob = pulp.LpProblem('GibbsEnergyMin', pulp.LpMinimize)
pvars = pulp.LpVariable.dicts('phase', phases, 0)
bvars = pulp.LpVariable.dicts('bound', bounds, 0.0, 1.0)
prob += pulp.lpSum( self.phase_energy(p)*pvars[p] for p in phases ) - \
pulp.lpSum( self.phase_energy(bound)*bvars[bound] for bound in bounds ), \
"Free Energy"
for elt in self.bound_space:
prob += sum([ p.unit_comp.get(elt,0)*pvars[p] for p in phases ])\
== \
sum([ b.unit_comp.get(elt, 0)*bvars[b] for b in bounds ]),\
'Contraint to the proper range of'+elt
prob += sum([ bvars[b] for b in bounds ]) == 1, \
'sum of bounds must be 1'
if pulp.GUROBI().available():
prob.solve(pulp.GUROBI(msg=False))
elif pulp.COIN_CMD().available():
prob.solve(pulp.COIN_CMD())
elif pulp.COINMP_DLL().available():
prob.solve(pulp.COINMP_DLL())
else:
prob.solve()
E = pulp.value(prob.objective)
xsoln = defaultdict(float,
[(p, pvars[p].varValue) for p in phases if
abs(pvars[p].varValue) > 1e-4])
return xsoln, E
示例8: get_objective_type
# 需要導入模塊: import pulp [as 別名]
# 或者: from pulp import LpMinimize [as 別名]
def get_objective_type(self):
''' Returns pulp.LpMinimize - we minimize objective function in case
of output-oriented multiplier model.
Returns:
pulp.LpMinimize.
'''
return pulp.LpMinimize
示例9: get_objective_type
# 需要導入模塊: import pulp [as 別名]
# 或者: from pulp import LpMinimize [as 別名]
def get_objective_type(self):
''' Returns pulp.LpMinimize - we minimize objective function in case
of input-oriented envelopment model.
Returns:
pulp.LpMaximize: type of objective function.
'''
return pulp.LpMinimize
示例10: solve
# 需要導入模塊: import pulp [as 別名]
# 或者: from pulp import LpMinimize [as 別名]
def solve(g):
el = g.get_edge_list()
nl = g.get_node_list()
p = LpProblem('min_cost', LpMinimize)
capacity = {}
cost = {}
demand = {}
x = {}
for e in el:
capacity[e] = g.get_edge_attr(e[0], e[1], 'capacity')
cost[e] = g.get_edge_attr(e[0], e[1], 'cost')
for i in nl:
demand[i] = g.get_node_attr(i, 'demand')
for e in el:
x[e] = LpVariable("x"+str(e), 0, capacity[e])
# add obj
objective = lpSum (cost[e]*x[e] for e in el)
p += objective
# add constraints
for i in nl:
out_neig = g.get_out_neighbors(i)
in_neig = g.get_in_neighbors(i)
p += lpSum(x[(i,j)] for j in out_neig) -\
lpSum(x[(j,i)] for j in in_neig)==demand[i]
p.solve()
return x, value(objective)
示例11: _solve_balancing_ilp_pulp
# 需要導入模塊: import pulp [as 別名]
# 或者: from pulp import LpMinimize [as 別名]
def _solve_balancing_ilp_pulp(A):
import pulp
x = [pulp.LpVariable('x%d' % i, lowBound=1, cat='Integer') for i in range(A.shape[1])]
prob = pulp.LpProblem("chempy balancing problem", pulp.LpMinimize)
prob += reduce(add, x)
for expr in [pulp.lpSum([x[i]*e for i, e in enumerate(row)]) for row in A.tolist()]:
prob += expr == 0
prob.solve()
return [pulp.value(_) for _ in x]
示例12: __min_one_norm
# 需要導入模塊: import pulp [as 別名]
# 或者: from pulp import LpMinimize [as 別名]
def __min_one_norm(B, initial_seed, seed):
weight_initial = 1 / float(len(initial_seed))
weight_later_added = weight_initial / float(0.5)
difference = len(seed) - len(initial_seed)
[r, c] = B.shape
prob = pulp.LpProblem("Minimum one norm", pulp.LpMinimize)
indices_y = range(0, r)
y = pulp.LpVariable.dicts("y_s", indices_y, 0)
indices_x = range(0, c)
x = pulp.LpVariable.dicts("x_s", indices_x)
f = dict(zip(indices_y, [1.0] * r))
prob += pulp.lpSum(f[i] * y[i] for i in indices_y) # objective function
prob += pulp.lpSum(y[s] for s in initial_seed) >= 1
prob += pulp.lpSum(y[r] for r in seed) >= 1 + weight_later_added * difference
for j in range(r):
temp = dict(zip(indices_x, list(B[j, :])))
prob += pulp.lpSum(y[j] + (temp[k] * x[k] for k in indices_x)) == 0
prob.solve()
result = []
for var in indices_y:
result.append(y[var].value())
return result
示例13: make_into_lp_problem
# 需要導入模塊: import pulp [as 別名]
# 或者: from pulp import LpMinimize [as 別名]
def make_into_lp_problem(good_for, N, add_noise=False):
"""
Helper function for solve_with_lp_and_reduce()
N --- number of isoform sequences
good_for --- dict of <isoform_index> --> list of matched paths index
"""
prob = LpProblem("The Whiskas Problem",LpMinimize)
# each good_for is (isoform_index, [list of matched paths index])
# ex: (0, [1,2,4])
# ex: (3, [2,5])
used_paths = []
for t_i, p_i_s in good_for:
used_paths += p_i_s
used_paths = list(set(used_paths))
variables = [LpVariable(str(i),0,1,LpInteger) for i in used_paths]
#variables = [LpVariable(str(i),0,1,LpInteger) for i in xrange(N)]
# objective is to minimize sum_{Xi}
prob += sum(v for v in variables)
already_seen = set()
# constraints are for each isoform, expressed as c_i * x_i >= 1
# where c_i = 1 if x_i is matched for the isoform
# ex: (0, [1,2,4]) becomes t_0 = x_1 + x_2 + x_4 >= 1
for t_i, p_i_s in good_for:
#c_i_s = [1 if i in p_i_s else 0 for i in xrange(N)]
#prob += sum(variables[i]*(1 if i in p_i_s else 0) for i in xrange(N)) >= 1
p_i_s.sort()
pattern = ",".join(map(str,p_i_s))
#print >> sys.stderr, t_i, p_i_s, pattern
if pattern not in already_seen:
if add_noise:
prob += sum(variables[i]*(1+random.random() if p in p_i_s else 0) for i,p in enumerate(used_paths)) >= 1
else:
prob += sum(variables[i]*(1 if p in p_i_s else 0) for i,p in enumerate(used_paths)) >= 1
already_seen.add(pattern)
prob.writeLP('cogent.lp')
return prob
示例14: word_mover_distance_probspec
# 需要導入模塊: import pulp [as 別名]
# 或者: from pulp import LpMinimize [as 別名]
def word_mover_distance_probspec(first_sent_tokens, second_sent_tokens, wvmodel, distancefunc=euclidean, lpFile=None):
""" Compute the Word Mover's distance (WMD) between the two given lists of tokens, and return the LP problem class.
Using methods of linear programming, supported by PuLP, calculate the WMD between two lists of words. A word-embedding
model has to be provided. The problem class is returned, containing all the information about the LP.
Reference: Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, Kilian Q. Weinberger, "From Word Embeddings to Document Distances," *ICML* (2015).
:param first_sent_tokens: first list of tokens.
:param second_sent_tokens: second list of tokens.
:param wvmodel: word-embedding models.
:param distancefunc: distance function that takes two numpy ndarray.
:param lpFile: log file to write out.
:return: a linear programming problem contains the solution
:type first_sent_tokens: list
:type second_sent_tokens: list
:type wvmodel: gensim.models.keyedvectors.KeyedVectors
:type distancefunc: function
:type lpFile: str
:rtype: pulp.LpProblem
"""
all_tokens = list(set(first_sent_tokens+second_sent_tokens))
wordvecs = {token: wvmodel[token] for token in all_tokens}
first_sent_buckets = tokens_to_fracdict(first_sent_tokens)
second_sent_buckets = tokens_to_fracdict(second_sent_tokens)
T = pulp.LpVariable.dicts('T_matrix', list(product(all_tokens, all_tokens)), lowBound=0)
prob = pulp.LpProblem('WMD', sense=pulp.LpMinimize)
prob += pulp.lpSum([T[token1, token2]*distancefunc(wordvecs[token1], wordvecs[token2])
for token1, token2 in product(all_tokens, all_tokens)])
for token2 in second_sent_buckets:
prob += pulp.lpSum([T[token1, token2] for token1 in first_sent_buckets])==second_sent_buckets[token2]
for token1 in first_sent_buckets:
prob += pulp.lpSum([T[token1, token2] for token2 in second_sent_buckets])==first_sent_buckets[token1]
if lpFile!=None:
prob.writeLP(lpFile)
prob.solve()
return prob
示例15: create_lscp_model
# 需要導入模塊: import pulp [as 別名]
# 或者: from pulp import LpMinimize [as 別名]
def create_lscp_model(coverage_dict, model_file=None, delineator="$", ):
"""
Creates a LSCP (Location set covering problem) using the provided coverage and
parameters. Writes a .lp file which can be solved with Gurobi
Church, R., & Murray, A. (2009). Coverage Business Site Selection, Location
Analysis, and GIS (pp. 209-233). Hoboken, New Jersey: Wiley.
:param coverage_dict: (dictionary) The coverage to use to generate the model
:param model_file: (string) The model file to output
:param delineator: (string) The character(s) to use to delineate the layer from the ids
:return: (Pulp problem) The generated problem to solve
"""
validate_coverage(coverage_dict, ["coverage"], ["binary"])
if not isinstance(coverage_dict, dict):
raise TypeError("coverage_dict is not a dictionary")
if model_file and not (isinstance(model_file, str)):
raise TypeError("model_file is not a string")
if not isinstance(delineator, str):
raise TypeError("delineator is not a string")
# create the variables
demand_vars = {}
for demand_id in coverage_dict["demand"]:
demand_vars[demand_id] = pulp.LpVariable("Y{}{}".format(delineator, demand_id), 0, 1, pulp.LpInteger)
facility_vars = {}
for facility_type in coverage_dict["facilities"]:
facility_vars[facility_type] = {}
for facility_id in coverage_dict["facilities"][facility_type]:
facility_vars[facility_type][facility_id] = pulp.LpVariable(
"{}{}{}".format(facility_type, delineator, facility_id), 0, 1, pulp.LpInteger)
# create the problem
prob = pulp.LpProblem("LSCP", pulp.LpMinimize)
# Create objective, minimize number of facilities
to_sum = []
for facility_type in coverage_dict["facilities"]:
for facility_id in coverage_dict["facilities"][facility_type]:
to_sum.append(facility_vars[facility_type][facility_id])
prob += pulp.lpSum(to_sum)
# add coverage constraints
for demand_id in coverage_dict["demand"]:
to_sum = []
for facility_type in coverage_dict["demand"][demand_id]["coverage"]:
for facility_id in coverage_dict["demand"][demand_id]["coverage"][facility_type]:
to_sum.append(facility_vars[facility_type][facility_id])
# Hack to get model to "solve" when infeasible with GLPK.
# Pulp will automatically add dummy variables when the sum is empty, since these are all the same name,
# it seems that GLPK doesn't read the lp problem properly and fails
if not to_sum:
to_sum = [pulp.LpVariable("__dummy{}{}".format(delineator, demand_id), 0, 0, pulp.LpInteger)]
prob += pulp.lpSum(to_sum) >= 1, "D{}".format(demand_id)
if model_file:
prob.writeLP(model_file)
return prob