本文整理匯總了Python中pulp.LpContinuous方法的典型用法代碼示例。如果您正苦於以下問題:Python pulp.LpContinuous方法的具體用法?Python pulp.LpContinuous怎麽用?Python pulp.LpContinuous使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pulp
的用法示例。
在下文中一共展示了pulp.LpContinuous方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _create_decision_variables
# 需要導入模塊: import pulp [as 別名]
# 或者: from pulp import LpContinuous [as 別名]
def _create_decision_variables(self):
self.production_variables = pulp.LpVariable.dicts(name='X', indexs=self.input_data.index,
lowBound=0, cat=pulp.LpContinuous)
self.inventory_variables = pulp.LpVariable.dicts(name='I', indexs=self.input_data.index,
lowBound=0, cat=pulp.LpContinuous)
# Alternative way of creating the variables:
# self.production_variables = {
# index: pulp.LpVariable(name='X_' + str(row['period']),
# lowBound=0, cat=pulp.LpContinuous)
# for index, row in self.input_data.iterrows()}
#
# self.inventory_variables = {
# index: pulp.LpVariable(name='I_' + str(row['period']),
# lowBound=0, cat=pulp.LpContinuous)
# for index, row in self.input_data.iterrows()}
# ================== Constraints ==================
示例2: create_model
# 需要導入模塊: import pulp [as 別名]
# 或者: from pulp import LpContinuous [as 別名]
def create_model(self):
def distances(assignment):
return l2_distance(self.data[assignment[0]], self.centroids[assignment[1]])
clusters = list(range(self.k))
assignments = [(i, j)for i in range(self.n) for j in range(self.k)]
# outflow variables for data nodes
self.y = pulp.LpVariable.dicts('data-to-cluster assignments',
assignments,
lowBound=0,
upBound=1,
cat=pulp.LpInteger)
# outflow variables for cluster nodes
self.b = pulp.LpVariable.dicts('cluster outflows',
clusters,
lowBound=0,
upBound=self.n-self.min_size,
cat=pulp.LpContinuous)
# create the model
self.model = pulp.LpProblem("Model for assignment subproblem", pulp.LpMinimize)
# objective function
self.model += pulp.lpSum(distances(assignment) * self.y[assignment] for assignment in assignments)
# flow balance constraints for data nodes
for i in range(self.n):
self.model += pulp.lpSum(self.y[(i, j)] for j in range(self.k)) == 1
# flow balance constraints for cluster nodes
for j in range(self.k):
self.model += pulp.lpSum(self.y[(i, j)] for i in range(self.n)) - self.min_size == self.b[j]
# flow balance constraint for the sink node
self.model += pulp.lpSum(self.b[j] for j in range(self.k)) == self.n - (self.k * self.min_size)
示例3: create_model
# 需要導入模塊: import pulp [as 別名]
# 或者: from pulp import LpContinuous [as 別名]
def create_model(self):
def distances(assignment):
return l2_distance(self.data[assignment[0]], self.centroids[assignment[1]])
clusters = list(range(self.k))
assignments = [(i, j)for i in range(self.n) for j in range(self.k)]
# outflow variables for data nodes
self.y = pulp.LpVariable.dicts('data-to-cluster assignments',
assignments,
lowBound=0,
upBound=1,
cat=pulp.LpInteger)
# outflow variables for cluster nodes
self.b = pulp.LpVariable.dicts('cluster outflows',
clusters,
lowBound=0,
upBound=self.n-self.min_size,
cat=pulp.LpContinuous)
# create the model
self.model = pulp.LpProblem("Model for assignment subproblem", pulp.LpMinimize)
# objective function
self.model += pulp.lpSum([distances(assignment) * self.y[assignment] for assignment in assignments])
# flow balance constraints for data nodes
for i in range(self.n):
self.model += pulp.lpSum(self.y[(i, j)] for j in range(self.k)) == 1
# flow balance constraints for cluster nodes
for j in range(self.k):
self.model += pulp.lpSum(self.y[(i, j)] for i in range(self.n)) - self.min_size == self.b[j]
# capacity constraint on outflow of cluster nodes
for j in range(self.k):
self.model += self.b[j] <= self.max_size - self.min_size
# flow balance constraint for the sink node
self.model += pulp.lpSum(self.b[j] for j in range(self.k)) == self.n - (self.k * self.min_size)
示例4: _create_lp
# 需要導入模塊: import pulp [as 別名]
# 或者: from pulp import LpContinuous [as 別名]
def _create_lp(self):
''' See base class.
'''
self.model._create_lp()
self.lp_model = self.model.lp_model
# create varibales
for (category_in_nom, category_in_denom), (lower_bound, upper_bound) in self.bounds.items():
if lower_bound:
variable = pulp.LpVariable(
'price_ratio_category_{0}_{1}_lb'.format(
category_in_nom, category_in_denom),
0, None, pulp.LpContinuous)
name = self.model._constraints[category_in_nom]
self.lp_model.constraints[name].addterm(variable, -1)
name = self.model._constraints[category_in_denom]
self.lp_model.constraints[name].addterm(variable, lower_bound)
if upper_bound:
variable = pulp.LpVariable(
'price_ratio_category_{0}_{1}_ub'.format(
category_in_nom, category_in_denom),
0, None, pulp.LpContinuous)
name = self.model._constraints[category_in_nom]
self.lp_model.constraints[name].addterm(variable, 1)
name = self.model._constraints[category_in_denom]
self.lp_model.constraints[name].addterm(variable, -upper_bound)
示例5: _create_lp
# 需要導入模塊: import pulp [as 別名]
# 或者: from pulp import LpContinuous [as 別名]
def _create_lp(self):
''' Creates initial LP.
'''
self._model_to_decorate._create_lp()
self.lp_model = self._model_to_decorate.lp_model
self._vrs_variable = pulp.LpVariable('VRS_variable', None, None,
pulp.LpContinuous)
self._model_to_decorate.lp_model.objective += self._vrs_variable
for dmu_constraint in self._model_to_decorate._dmu_constraint_names.keys():
self._model_to_decorate.lp_model.constraints[dmu_constraint] += (
self.multiplier * self._vrs_variable)
示例6: _create_lp
# 需要導入模塊: import pulp [as 別名]
# 或者: from pulp import LpContinuous [as 別名]
def _create_lp(self):
''' Creates initial linear program.
'''
assert len(self.input_data.DMU_codes) != 0
self._variables.clear()
self._constraints.clear()
# create LP for the first DMU - it is the easiest way to
# adapt current code
for elem in self.input_data.DMU_codes:
dmu_code = elem
break
orientation = self._concrete_model.get_orientation()
obj_type = self._concrete_model.get_objective_type()
self.lp_model = pulp.LpProblem('Envelopment model: {0}-'
'oriented'.format(orientation),
obj_type)
ub_obj = self._concrete_model.get_upper_bound_for_objective_variable()
obj_variable = pulp.LpVariable('Variable in objective function',
self._concrete_model.
get_lower_bound_for_objective_variable(),
ub_obj,
pulp.LpContinuous)
self._variables['obj_var'] = obj_variable
self.lp_model += (obj_variable,
'Efficiency score or inverse of efficiency score')
lambda_variables = pulp.LpVariable.dicts('lambda',
self.input_data.DMU_codes,
0, None, pulp.LpContinuous)
self._variables.update(lambda_variables)
self._add_constraints_for_outputs(lambda_variables, dmu_code,
obj_variable)
self._add_constraints_for_inputs(lambda_variables, dmu_code,
obj_variable)
示例7: _create_lp
# 需要導入模塊: import pulp [as 別名]
# 或者: from pulp import LpContinuous [as 別名]
def _create_lp(self):
''' Creates initial LP model.
'''
assert len(self.input_data.DMU_codes) != 0
# create LP for the first DMU - it is the easiest way to
# adapt current code
for elem in self.input_data.DMU_codes:
dmu_code = elem
break
self.lp_model = pulp.LpProblem(
'Multiplier model: {orientation}-oriented'.format(
orientation=self._concrete_model.get_orientation()),
self._concrete_model.get_objective_type())
self._output_variables = pulp.LpVariable.dicts(
'mu', self.input_data.output_categories, self.tolerance, None,
pulp.LpContinuous)
self._input_variables = pulp.LpVariable.dicts(
'eta', self.input_data.input_categories, self.tolerance, None,
pulp.LpContinuous)
self.lp_model += (self._concrete_model.get_objective_function(
self.input_data, dmu_code, self._input_variables,
self._output_variables),
'Efficiency score or inverse of efficiency score')
self._dmu_constraint_names.clear()
for dmu in self.input_data.DMU_codes:
output_sum = pulp.lpSum([self.input_data.coefficients[
dmu, category] * self._output_variables[category]
for category in self.input_data.output_categories])
input_sum = pulp.lpSum([self.input_data.coefficients[
dmu, category] * self._input_variables[category]
for category in self.input_data.input_categories])
name = 'DMU_constraint_{count}'.format(count=dmu)
self.lp_model += (output_sum - input_sum <= 0, name)
self._dmu_constraint_names[name] = dmu
self.lp_model += (self._concrete_model.get_equality_constraint(
self.input_data, dmu_code, self._input_variables,
self._output_variables), 'equality_constraint')