本文整理匯總了Python中ptvsd.wait_for_attach方法的典型用法代碼示例。如果您正苦於以下問題:Python ptvsd.wait_for_attach方法的具體用法?Python ptvsd.wait_for_attach怎麽用?Python ptvsd.wait_for_attach使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類ptvsd
的用法示例。
在下文中一共展示了ptvsd.wait_for_attach方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: start
# 需要導入模塊: import ptvsd [as 別名]
# 或者: from ptvsd import wait_for_attach [as 別名]
def start():
if environ.get('DEBUGGING'):
ptvsd.enable_attach(address=(
'127.0.0.1', int(environ.get('DEBUG_PORT'))))
print(ATTACH_DEBUGGER_EVENT)
t = Timer(int(environ.get("debugger_wait_time", 30)), _handle_detached)
t.start()
ptvsd.wait_for_attach()
t.cancel()
logger.debug('Starting grpc server..')
server = grpc.server(ThreadPoolExecutor(max_workers=1))
p = server.add_insecure_port('127.0.0.1:0')
handler = handlers.GrpcServiceHandler(server)
spg.add_RunnerServicer_to_server(handler, server)
logger.info('Listening on port:{}'.format(p))
server.start()
t = threading.Thread(name="listener", target=handler.wait_for_kill_event)
t.start()
t.join()
os._exit(0)
示例2: debug_connect
# 需要導入模塊: import ptvsd [as 別名]
# 或者: from ptvsd import wait_for_attach [as 別名]
def debug_connect():
connected = False
while not connected:
try:
import socket
server = socket.socket(proto=socket.IPPROTO_TCP)
server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
server.bind(('127.0.0.1', 3018))
server.close()
connected = True
except OSError:
import time
time.sleep(1)
import ptvsd
ptvsd.enable_attach('SECRET', ('127.0.0.1', 3018))
ptvsd.wait_for_attach()
return True
示例3: debug_remote
# 需要導入模塊: import ptvsd [as 別名]
# 或者: from ptvsd import wait_for_attach [as 別名]
def debug_remote(
file,
port_num,
debug_id,
wait_on_exception,
redirect_output,
wait_on_exit,
break_on_systemexit_zero,
debug_stdlib,
run_as
):
global BREAK_ON_SYSTEMEXIT_ZERO, DEBUG_STDLIB
BREAK_ON_SYSTEMEXIT_ZERO = break_on_systemexit_zero
DEBUG_STDLIB = debug_stdlib
import datetime
print('%s: Remote launcher starting ptvsd attach wait with File: %s, Port: %d, Id: %s\n' % (datetime.datetime.now(), file, port_num, debug_id))
ptvsd.enable_attach(debug_id, address = ('0.0.0.0', port_num), redirect_output = redirect_output)
try:
import _ptvsdhelper
if _ptvsdhelper.ping_debugger_for_attach():
ptvsd.wait_for_attach()
except ImportError:
_ptvsdhelper = None
# now execute main file
globals_obj = {'__name__': '__main__'}
if run_as == 'module':
vspd.exec_module(file, globals_obj)
elif run_as == 'code':
vspd.exec_code(file, '<string>', globals_obj)
else:
vspd.exec_file(file, globals_obj)
# arguments are port, debug id, normal arguments which should include a filename to execute
# change to directory we expected to start from
示例4: __post_init__
# 需要導入模塊: import ptvsd [as 別名]
# 或者: from ptvsd import wait_for_attach [as 別名]
def __post_init__(self):
if os.path.exists(self.output_dir) and os.listdir(
self.output_dir) and self.do_train and not self.overwrite_output_dir:
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
self.output_dir))
# Setup distant debugging if needed
if self.server_ip and self.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(self.server_ip, self.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if self.local_rank == -1 or self.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not self.no_cuda else "cpu")
self.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(self.local_rank)
device = torch.device("cuda", self.local_rank)
torch.distributed.init_process_group(backend='nccl')
self.n_gpu = 1
self.device = device
self.output_mode = "classification"
self.train_batch_size = self.per_gpu_train_batch_size * max(1, self.n_gpu)
self.eval_batch_size = self.per_gpu_eval_batch_size * max(1, self.n_gpu)
self._tokenizer = None
self._model = None
self._data_cache = None
self.train_started = None
示例5: __init__
# 需要導入模塊: import ptvsd [as 別名]
# 或者: from ptvsd import wait_for_attach [as 別名]
def __init__(self, organization, base_url, date_format, request_date_format = None, **kwargs):
if config.debug:
try:
import ptvsd
ptvsd.enable_attach(address=('0.0.0.0', 5860))
except:
# attach already enabled
pass
if not ptvsd.is_attached():
ptvsd.wait_for_attach()
self.organization = organization
# date_format is the string that specifies the date style of the target website
if request_date_format == None:
request_date_format = date_format
self.jobid = kwargs['_job'] if '_job' in kwargs else None
self.session = HttpUtils.get_session()
self.date_format = date_format
self.time_utils = TimeUtils(date_format)
self.base_url = base_url
self.identifier = re.sub(r'\W', '', base_url)
self.event_manager = EventManager()
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
self.memory_handler = logging.handlers.MemoryHandler(0)
self.memory_handler.setFormatter(formatter)
self.stream_handler = logging.StreamHandler()
self.stream_handler.setFormatter(formatter)
self.configure_logger(self.name, self.memory_handler, logging.INFO)
self.configure_logger(self.name, self.stream_handler, logging.INFO)
self.configure_logger('scrapy', self.memory_handler, logging.WARNING)
self.configure_logger('scrapy', self.stream_handler, logging.WARNING)
self.configure_logger('twisted', self.memory_handler, logging.WARNING)
self.configure_logger('twisted', self.stream_handler, logging.WARNING)
start_date = datetime.now().strftime('%m-%d-%Y')
end_date = (datetime.now() + relativedelta(months=+1)).strftime('%m-%d-%Y')
request_format_utils = TimeUtils('%m-%d-%Y')
# When this is running for multiple days, validating if the date is in the past causes issues
self.start_date = request_format_utils.convert_date_format(start_date, request_date_format, validate_past=False)
self.end_date = request_format_utils.convert_date_format(end_date, request_date_format, validate_past=False)
self.start_timestamp = request_format_utils.min_timestamp_for_day(start_date)
self.end_timestamp = request_format_utils.max_timestamp_for_day(end_date)
if not config.bypass_auth:
self.token = self.session.post(config.login, json={'email': config.scraper_username, 'password': config.scraper_password}).content.decode()
else:
self.token = None
示例6: prepare
# 需要導入模塊: import ptvsd [as 別名]
# 或者: from ptvsd import wait_for_attach [as 別名]
def prepare(args):
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
os.makedirs(args.output_dir, exist_ok=True)
json.dump(args.__dict__, open(os.path.join(
args.output_dir, 'train_opt.json'), 'w'), sort_keys=True, indent=2)
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
# Set seed
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
logger.info("Training/evaluation parameters %s", args)
# Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
# Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
# remove the need for this code, but it is still valid.
if args.fp16:
try:
import apex
apex.amp.register_half_function(torch, 'einsum')
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
示例7: generic_train
# 需要導入模塊: import ptvsd [as 別名]
# 或者: from ptvsd import wait_for_attach [as 別名]
def generic_train(model, args):
# init model
set_seed(args)
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
checkpoint_callback = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir, prefix="checkpoint", monitor="val_loss", mode="min", save_top_k=5
)
train_params = dict(
accumulate_grad_batches=args.gradient_accumulation_steps,
gpus=args.n_gpu,
max_epochs=args.num_train_epochs,
early_stop_callback=False,
gradient_clip_val=args.max_grad_norm,
checkpoint_callback=checkpoint_callback,
)
if args.fp16:
train_params["use_amp"] = args.fp16
train_params["amp_level"] = args.fp16_opt_level
if args.n_tpu_cores > 0:
global xm
import torch_xla.core.xla_model as xm
train_params["num_tpu_cores"] = args.n_tpu_cores
train_params["gpus"] = 0
if args.n_gpu > 1:
train_params["distributed_backend"] = "ddp"
trainer = pl.Trainer(**train_params)
if args.do_train:
trainer.fit(model)
return trainer
示例8: RunWithArgs
# 需要導入模塊: import ptvsd [as 別名]
# 或者: from ptvsd import wait_for_attach [as 別名]
def RunWithArgs(
main: Callable[[List[str]], None], argv: Optional[List[str]] = None,
):
"""Begin executing the program.
Args:
main: The main function to execute. It takes an single argument "argv",
which is a list of command line arguments with parsed flags removed.
If it returns an integer, it is used as the process's exit code.
argv: A non-empty list of the command line arguments including program name,
sys.argv is used if None.
"""
def DoMain(argv):
"""Run the user-provided main method, with app-level arg handling."""
if FLAGS.version:
print(GetVersionInformationString())
sys.exit(0)
elif FLAGS.dump_flags:
print(FlagsToString())
sys.exit(0)
elif FLAGS.dump_flags_to_json:
print(
json.dumps(
FlagsToDict(), sort_keys=True, indent=2, separators=(",", ": ")
)
)
sys.exit(0)
# Optionally wait for the user to attach a Visual Studio (Code) debugger.
# This requires additional configuration of the IDE.
# See: https://stackoverflow.com/a/61367381
if FLAGS.ptvsd:
import ptvsd
ptvsd.enable_attach(address=("localhost", 5724), redirect_output=True)
Log(1, "Waiting to attach VS Code debugger on port 5724 ...")
ptvsd.wait_for_attach()
Log(1, "Debugger attached. Resuming ...")
main(argv)
try:
absl_app.run(DoMain, argv=argv)
except KeyboardInterrupt:
FlushLogs()
sys.stdout.flush()
sys.stderr.flush()
print("keyboard interrupt")
sys.exit(1)