當前位置: 首頁>>代碼示例>>Python>>正文


Python bar.Bar方法代碼示例

本文整理匯總了Python中progress.bar.Bar方法的典型用法代碼示例。如果您正苦於以下問題:Python bar.Bar方法的具體用法?Python bar.Bar怎麽用?Python bar.Bar使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在progress.bar的用法示例。


在下文中一共展示了bar.Bar方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: preprocess_midi_files_under

# 需要導入模塊: from progress import bar [as 別名]
# 或者: from progress.bar import Bar [as 別名]
def preprocess_midi_files_under(midi_root, save_dir):
    midi_paths = list(utils.find_files_by_extensions(midi_root, ['.mid', '.midi']))
    os.makedirs(save_dir, exist_ok=True)
    out_fmt = '{}-{}.data'

    for path in Bar('Processing').iter(midi_paths):
        print(' ', end='[{}]'.format(path), flush=True)

        try:
            data = preprocess_midi(path)
        except KeyboardInterrupt:
            print(' Abort')
            return
        except EOFError:
            print('EOF Error')
            return

        with open('{}/{}.pickle'.format(save_dir, path.split('/')[-1]), 'wb') as f:
            pickle.dump(data, f) 
開發者ID:jason9693,項目名稱:MusicTransformer-pytorch,代碼行數:21,代碼來源:preprocess.py

示例2: main

# 需要導入模塊: from progress import bar [as 別名]
# 或者: from progress.bar import Bar [as 別名]
def main():
  if len(sys.argv) < 2:
    print("Usage: {} dataset_name".format(sys.argv[0]))
    exit(1)

  file_name = sys.argv[1]
  log_file = h5py.File('../dataset/log/{}.h5'.format(file_name))
  camera_file = h5py.File('../dataset/camera/{}.h5'.format(file_name))  

  zipped_log = izip(
    log_file['times'],
    log_file['fiber_accel'],
    log_file['fiber_gyro'])

  with rosbag.Bag('{}.bag'.format(file_name), 'w') as bag:
    bar = Bar('Camera', max=len(camera_file['X']))
    for i, img_data in enumerate(camera_file['X']):
      m_img = Image()
      m_img.header.stamp = rospy.Time.from_sec(0.01 * i)
      m_img.height = img_data.shape[1]
      m_img.width = img_data.shape[2]
      m_img.step = 3 * img_data.shape[2]
      m_img.encoding = 'rgb8'
      m_img.data = np.transpose(img_data, (1, 2, 0)).flatten().tolist()
      
      bag.write('/camera/image_raw', m_img, m_img.header.stamp)
      bar.next()
      
    bar.finish()

    bar = Bar('IMU', max=len(log_file['times']))
    for time, v_accel, v_gyro in zipped_log:
      m_imu = Imu()
      m_imu.header.stamp = rospy.Time.from_sec(time)
      [setattr(m_imu.linear_acceleration, c, v_accel[i]) for i, c in enumerate('xyz')]
      [setattr(m_imu.angular_velocity, c, v_gyro[i]) for i, c in enumerate('xyz')]

      bag.write('/fiber_imu', m_imu, m_imu.header.stamp)
      bar.next()

    bar.finish() 
開發者ID:commaai,項目名稱:research,代碼行數:43,代碼來源:dataset_to_rosbag.py

示例3: undeploy

# 需要導入模塊: from progress import bar [as 別名]
# 或者: from progress.bar import Bar [as 別名]
def undeploy(self, lab_hash, selected_machines=None):
        machines = self.get_machines_by_filters(lab_hash=lab_hash)

        pool_size = utils.get_pool_size()
        machines_pool = Pool(pool_size)

        items = utils.chunk_list(machines, pool_size)

        progress_bar = Bar("Deleting machines...", max=len(machines) if not selected_machines
                                                       else len(selected_machines)
                           )

        for chunk in items:
            machines_pool.map(func=partial(self._undeploy_machine, selected_machines, True, progress_bar),
                              iterable=chunk
                              )

        progress_bar.finish() 
開發者ID:KatharaFramework,項目名稱:Kathara,代碼行數:20,代碼來源:DockerMachine.py

示例4: deploy_links

# 需要導入模塊: from progress import bar [as 別名]
# 或者: from progress.bar import Bar [as 別名]
def deploy_links(self, lab):
        pool_size = utils.get_pool_size()
        link_pool = Pool(pool_size)

        links = lab.links.items()
        items = utils.chunk_list(links, pool_size)

        progress_bar = Bar('Deploying links...', max=len(links))

        for chunk in items:
            link_pool.map(func=partial(self._deploy_link, progress_bar), iterable=chunk)

        progress_bar.finish()

        # Create a docker bridge link in the lab object and assign the Docker Network object associated to it.
        docker_bridge = self.get_docker_bridge()
        link = lab.get_or_new_link(BRIDGE_LINK_NAME)
        link.api_object = docker_bridge 
開發者ID:KatharaFramework,項目名稱:Kathara,代碼行數:20,代碼來源:DockerLink.py

示例5: exifJSON

# 需要導入模塊: from progress import bar [as 別名]
# 或者: from progress.bar import Bar [as 別名]
def exifJSON():
	print("Running exiftool to JSON")
	os.chdir(ROOT_DIR + "/media/")
	mediadir = os.listdir()
	mediafiles = len(mediadir)
	jsonbar = Bar('Processing', max=mediafiles)
	for i in range(mediafiles):
		for filename in os.listdir("."):
			exifoutputjson = exif.get_json(filename)
			#basejson = os.path.basename(filename)
			os.chdir(ROOT_DIR + "/exifdata/json")
			#Prints output to json file
			print(json.dumps(exifoutputjson, sort_keys=True, indent=0, separators=(',', ': ')), 
				file= open(filename + ".json","w"))
			#print(json.dumps(exifoutputjson, sort_keys=True, indent=0, separators=(',', ': ')), 
			#	file= open(os.path.splitext(basejson)[0]+".json","w"))

			jsonbar.next()
			os.chdir(ROOT_DIR + "/media")	
		break
	jsonbar.finish()

#exiftool in HTML 
開發者ID:chriswmorris,項目名稱:Metaforge,代碼行數:25,代碼來源:exiftool.py

示例6: exifHTML

# 需要導入模塊: from progress import bar [as 別名]
# 或者: from progress.bar import Bar [as 別名]
def exifHTML():
	print("Running exiftool to HTML")
	os.chdir(ROOT_DIR + "/media/")
	mediadir = os.listdir()
	mediafiles = len(mediadir)
	htmlbar = Bar('Processing', max=mediafiles)
	for i in range(mediafiles):
		for filename in os.listdir("."):
			#Prints output to HTML
			#basehtml = os.path.basename(filename)
			exifoutputhtml = exif.command_line(['exiftool', '-h', filename])
			os.chdir(ROOT_DIR + "/exifdata/html")
			#print(exifoutputhtml,file = open(os.path.splitext(basehtml)[0]+ ".html", "w"))
			print(exifoutputhtml,file = open(filename + ".html","w"))
			htmlbar.next()
			os.chdir(ROOT_DIR + "/media")
		break
	htmlbar.finish()

#exiftool hex dump to html 
開發者ID:chriswmorris,項目名稱:Metaforge,代碼行數:22,代碼來源:exiftool.py

示例7: exifHTMLDump

# 需要導入模塊: from progress import bar [as 別名]
# 或者: from progress.bar import Bar [as 別名]
def exifHTMLDump():
	print("Running exiftool to HTML Dump")
	os.chdir(ROOT_DIR + "/media/")
	mediadir = os.listdir()
	mediafiles = len(mediadir)
	os.chdir(ROOT_DIR + "/media/")
	htmldumpbar = Bar('Processing', max=mediafiles)
	for i in range(mediafiles):
		for filename in os.listdir("."):
			#basehtmldump = os.path.basename(filename)
			exifoutputhtmldump = exif.command_line(['exiftool', '-htmlDump', filename])
			os.chdir(ROOT_DIR + "/exifdata/hex_html")	
			#htmldumpfile = open(os.path.splitext(basehtmldump)[0] + ".html", 'wb')
			htmldumpfile = open(filename + ".html", 'wb')
			htmldumpfile.write(exifoutputhtmldump)
			htmldumpfile.close()
			htmldumpbar.next()
			os.chdir(ROOT_DIR + "/media")
		break
	htmldumpbar.finish() 
開發者ID:chriswmorris,項目名稱:Metaforge,代碼行數:22,代碼來源:exiftool.py

示例8: test

# 需要導入模塊: from progress import bar [as 別名]
# 或者: from progress.bar import Bar [as 別名]
def test(model, test_loader):
    """
    test a model on a given dataset
    """
    total, correct = 0, 0
    bar = Bar('Testing', max=len(test_loader))
    model.eval()
    with torch.no_grad():
        for batch_idx, (inputs, targets) in enumerate(test_loader):
            inputs, targets = inputs.cuda(), targets.cuda()
            outputs = model(inputs)
            _, predicted = outputs.max(1)
            total += targets.size(0)
            correct += predicted.eq(targets).sum().item()
            acc = correct / total

            bar.suffix = f'({batch_idx + 1}/{len(test_loader)}) | ETA: {bar.eta_td} | top1: {acc}'
            bar.next()
    print('\nFinal acc: %.2f%% (%d/%d)' % (100. * acc, correct, total))
    bar.finish()
    model.train()
    return acc 
開發者ID:jakc4103,項目名稱:DFQ,代碼行數:24,代碼來源:train_utils.py

示例9: __init__

# 需要導入模塊: from progress import bar [as 別名]
# 或者: from progress.bar import Bar [as 別名]
def __init__(self, root, verbose=False):
        assert os.path.isdir(root), root
        paths = utils.find_files_by_extensions(root, ['.data'])
        self.root = root
        self.samples = []
        self.seqlens = []
        if verbose:
            paths = Bar(root).iter(list(paths))
        for path in paths:
            eventseq, controlseq = torch.load(path)
            controlseq = ControlSeq.recover_compressed_array(controlseq)
            assert len(eventseq) == len(controlseq)
            self.samples.append((eventseq, controlseq))
            self.seqlens.append(len(eventseq))
        self.avglen = np.mean(self.seqlens) 
開發者ID:djosix,項目名稱:Performance-RNN-PyTorch,代碼行數:17,代碼來源:data.py

示例10: preprocess_midi_files_under

# 需要導入模塊: from progress import bar [as 別名]
# 或者: from progress.bar import Bar [as 別名]
def preprocess_midi_files_under(midi_root, save_dir, num_workers):
    midi_paths = list(utils.find_files_by_extensions(midi_root, ['.mid', '.midi']))
    os.makedirs(save_dir, exist_ok=True)
    out_fmt = '{}-{}.data'
    
    results = []
    executor = ProcessPoolExecutor(num_workers)

    for path in midi_paths:
        try:
            results.append((path, executor.submit(preprocess_midi, path)))
        except KeyboardInterrupt:
            print(' Abort')
            return
        except:
            print(' Error')
            continue
    
    for path, future in Bar('Processing').iter(results):
        print(' ', end='[{}]'.format(path), flush=True)
        name = os.path.basename(path)
        code = hashlib.md5(path.encode()).hexdigest()
        save_path = os.path.join(save_dir, out_fmt.format(name, code))
        torch.save(future.result(), save_path)

    print('Done') 
開發者ID:djosix,項目名稱:Performance-RNN-PyTorch,代碼行數:28,代碼來源:preprocess.py

示例11: generate

# 需要導入模塊: from progress import bar [as 別名]
# 或者: from progress.bar import Bar [as 別名]
def generate(self,
                 prior: torch.Tensor,
                 length=2048,
                 tf_board_writer: SummaryWriter = None):
        decode_array = prior
        result_array = prior
        print(config)
        print(length)
        for i in Bar('generating').iter(range(length)):
            if decode_array.size(1) >= config.threshold_len:
                decode_array = decode_array[:, 1:]
            _, _, look_ahead_mask = \
                utils.get_masked_with_pad_tensor(decode_array.size(1), decode_array, decode_array, pad_token=config.pad_token)

            # result, _ = self.forward(decode_array, lookup_mask=look_ahead_mask)
            # result, _ = decode_fn(decode_array, look_ahead_mask)
            result, _ = self.Decoder(decode_array, None)
            result = self.fc(result)
            result = result.softmax(-1)

            if tf_board_writer:
                tf_board_writer.add_image("logits", result, global_step=i)

            u = 0
            if u > 1:
                result = result[:, -1].argmax(-1).to(decode_array.dtype)
                decode_array = torch.cat((decode_array, result.unsqueeze(-1)), -1)
            else:
                pdf = dist.OneHotCategorical(probs=result[:, -1])
                result = pdf.sample().argmax(-1).unsqueeze(-1)
                # result = torch.transpose(result, 1, 0).to(torch.int32)
                decode_array = torch.cat((decode_array, result), dim=-1)
                result_array = torch.cat((result_array, result), dim=-1)
            del look_ahead_mask
        result_array = result_array[0]
        return result_array 
開發者ID:jason9693,項目名稱:MusicTransformer-pytorch,代碼行數:38,代碼來源:model.py

示例12: train

# 需要導入模塊: from progress import bar [as 別名]
# 或者: from progress.bar import Bar [as 別名]
def train(train_loader, model, optimizer, lr_now=None, max_norm=True, is_cuda=False, dim_used=[], dct_n=15):
    t_l = utils.AccumLoss()

    model.train()
    st = time.time()
    bar = Bar('>>>', fill='>', max=len(train_loader))
    for i, (inputs, targets, all_seq) in enumerate(train_loader):

        batch_size = inputs.shape[0]
        if batch_size == 1:
            continue

        bt = time.time()
        if is_cuda:
            inputs = Variable(inputs.cuda()).float()
            all_seq = Variable(all_seq.cuda(async=True)).float()

        outputs = model(inputs)

        # calculate loss and backward
        loss = loss_funcs.mpjpe_error_p3d(outputs, all_seq, dct_n, dim_used)
        optimizer.zero_grad()
        loss.backward()
        if max_norm:
            nn.utils.clip_grad_norm(model.parameters(), max_norm=1)
        optimizer.step()

        # update the training loss
        t_l.update(loss.cpu().data.numpy()[0] * batch_size, batch_size)

        bar.suffix = '{}/{}|batch time {:.4f}s|total time{:.2f}s'.format(i + 1, len(train_loader), time.time() - bt,
                                                                         time.time() - st)
        bar.next()
    bar.finish()
    return lr_now, t_l.avg 
開發者ID:wei-mao-2019,項目名稱:LearnTrajDep,代碼行數:37,代碼來源:main_3d_eval.py

示例13: val

# 需要導入模塊: from progress import bar [as 別名]
# 或者: from progress.bar import Bar [as 別名]
def val(train_loader, model, is_cuda=False, dim_used=[], dct_n=15):
    t_3d = utils.AccumLoss()

    model.eval()
    st = time.time()
    bar = Bar('>>>', fill='>', max=len(train_loader))
    for i, (inputs, targets, all_seq) in enumerate(train_loader):
        bt = time.time()

        if is_cuda:
            inputs = Variable(inputs.cuda()).float()
            all_seq = Variable(all_seq.cuda(async=True)).float()

        outputs = model(inputs)

        n, _, _ = all_seq.data.shape

        m_err = loss_funcs.mpjpe_error_p3d(outputs, all_seq, dct_n, dim_used)

        # update the training loss
        t_3d.update(m_err.cpu().data.numpy()[0] * n, n)

        bar.suffix = '{}/{}|batch time {:.4f}s|total time{:.2f}s'.format(i + 1, len(train_loader), time.time() - bt,
                                                                         time.time() - st)
        bar.next()
    bar.finish()
    return t_3d.avg 
開發者ID:wei-mao-2019,項目名稱:LearnTrajDep,代碼行數:29,代碼來源:main_3d_eval.py

示例14: train

# 需要導入模塊: from progress import bar [as 別名]
# 或者: from progress.bar import Bar [as 別名]
def train(train_loader, model, optimizer, lr_now=None, max_norm=True, is_cuda=False, dim_used=[], dct_n=15):
    t_l = utils.AccumLoss()

    model.train()
    st = time.time()
    bar = Bar('>>>', fill='>', max=len(train_loader))
    for i, (inputs, targets, all_seq) in enumerate(train_loader):

        batch_size = inputs.shape[0]
        if batch_size == 1:
            continue

        bt = time.time()
        if is_cuda:
            inputs = Variable(inputs.cuda()).float()
            all_seq = Variable(all_seq.cuda(async=True)).float()

        outputs = model(inputs)

        # calculate loss and backward
        loss = loss_funcs.mpjpe_error_p3d(outputs, all_seq, dct_n, dim_used)
        optimizer.zero_grad()
        loss.backward()
        if max_norm:
            nn.utils.clip_grad_norm(model.parameters(), max_norm=1)
        optimizer.step()

        # update the training loss
        t_l.update(loss.cpu().data.numpy()[0] * batch_size, batch_size)

        bar.suffix = '{}/{}|batch time {:.4f}s|total time{:.2f}s'.format(i+1, len(train_loader), time.time() - bt,
                                                                         time.time() - st)
        bar.next()
    bar.finish()
    return lr_now, t_l.avg 
開發者ID:wei-mao-2019,項目名稱:LearnTrajDep,代碼行數:37,代碼來源:main_3d.py

示例15: val

# 需要導入模塊: from progress import bar [as 別名]
# 或者: from progress.bar import Bar [as 別名]
def val(train_loader, model, is_cuda=False, dim_used=[], dct_n=15):
    t_3d = utils.AccumLoss()

    model.eval()
    st = time.time()
    bar = Bar('>>>', fill='>', max=len(train_loader))
    for i, (inputs, targets, all_seq) in enumerate(train_loader):
        bt = time.time()

        if is_cuda:
            inputs = Variable(inputs.cuda()).float()
            all_seq = Variable(all_seq.cuda(async=True)).float()

        outputs = model(inputs)

        n, _, _ = all_seq.data.shape

        m_err = loss_funcs.mpjpe_error_p3d(outputs, all_seq, dct_n, dim_used)

        # update the training loss
        t_3d.update(m_err.cpu().data.numpy()[0] * n, n)

        bar.suffix = '{}/{}|batch time {:.4f}s|total time{:.2f}s'.format(i+1, len(train_loader), time.time() - bt,
                                                                         time.time() - st)
        bar.next()
    bar.finish()
    return t_3d.avg 
開發者ID:wei-mao-2019,項目名稱:LearnTrajDep,代碼行數:29,代碼來源:main_3d.py


注:本文中的progress.bar.Bar方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。