當前位置: 首頁>>代碼示例>>Python>>正文


Python pretrainedmodels.utils方法代碼示例

本文整理匯總了Python中pretrainedmodels.utils方法的典型用法代碼示例。如果您正苦於以下問題:Python pretrainedmodels.utils方法的具體用法?Python pretrainedmodels.utils怎麽用?Python pretrainedmodels.utils使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pretrainedmodels的用法示例。


在下文中一共展示了pretrainedmodels.utils方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: import pretrainedmodels [as 別名]
# 或者: from pretrainedmodels import utils [as 別名]
def main():
	args = parser.parse_args()
	
	try:
		with open(args.save) as fp:
			model_info = json.load(fp)
	except:
		model_info = {}

	for m in model_names:
		if not m in model_info.keys():
		
			# create model
			print("=> creating model '{}'".format(m))
			if args.pretrained.lower() not in ['false', 'none', 'not', 'no', '0']:
				print("=> using pre-trained parameters '{}'".format(args.pretrained))
				model = pretrainedmodels.__dict__[m](num_classes=1000,
					pretrained=args.pretrained)
			else:
				model = pretrainedmodels.__dict__[m]()

			cudnn.benchmark = True

			scale = 0.875

			print('Images transformed from size {} to {}'.format(
				int(round(max(model.input_size) / scale)),
				model.input_size))
			
			model = model.cuda().eval()
			model = utils.add_flops_counting_methods(model)
			model.start_flops_count()
			
			with torch.no_grad():
				_ = model(torch.randn(args.batch_size, *model.input_size).cuda(non_blocking=True))
			
			summary, n_params = utils.summary(model.input_size, model)
			model_info[m] = (model.compute_average_flops_cost() / 1e9 / 2, n_params.item())

			with open(args.save, 'w') as fp:
				json.dump(model_info, fp) 
開發者ID:CeLuigi,項目名稱:models-comparison.pytorch,代碼行數:43,代碼來源:compute_computational_complexity.py

示例2: main

# 需要導入模塊: import pretrainedmodels [as 別名]
# 或者: from pretrainedmodels import utils [as 別名]
def main():
    global args
    args = parser.parse_args()

    # Load Model
    model = pretrainedmodels.__dict__[args.arch](num_classes=1000,
                                            pretrained='imagenet')
    model.eval()

    path_img = args.path_img
    # Load and Transform one input image
    load_img = utils.LoadImage()
    tf_img = utils.TransformImage(model)

    input_data = load_img(args.path_img) # 3x400x225
    input_data = tf_img(input_data)      # 3x299x299
    input_data = input_data.unsqueeze(0) # 1x3x299x299
    input = torch.autograd.Variable(input_data)

    # Load Imagenet Synsets
    with open('../data/imagenet_synsets.txt', 'r') as f:
        synsets = f.readlines()

    # len(synsets)==1001
    # sysnets[0] == background
    synsets = [x.strip() for x in synsets]
    splits = [line.split(' ') for line in synsets]
    key_to_classname = {spl[0]:' '.join(spl[1:]) for spl in splits}

    with open('../data/imagenet_classes.txt', 'r') as f:
        class_id_to_key = f.readlines()

    class_id_to_key = [x.strip() for x in class_id_to_key]

    # Make predictions
    output = model(input) # size(1, 1000)
    max, argmax = output.data.squeeze().max(0)
    class_id = argmax[0]
    class_key = class_id_to_key[class_id]
    classname = key_to_classname[class_key]

    print("'{}': '{}' is a '{}'".format(args.arch, path_img, classname)) 
開發者ID:alexandonian,項目名稱:pretorched-x,代碼行數:44,代碼來源:imagenet_logits.py

示例3: main

# 需要導入模塊: import pretrainedmodels [as 別名]
# 或者: from pretrainedmodels import utils [as 別名]
def main ():
    global args
    args = parser.parse_args()
    print('\nCUDA status: {}'.format(args.cuda))

    print('\nLoad pretrained model on Imagenet')
    model = pretrainedmodels.__dict__[args.arch](num_classes=1000, pretrained='imagenet')
    model.eval()
    if args.cuda:
        model.cuda()

    features_size = model.last_linear.in_features
    model.last_linear = pretrainedmodels.utils.Identity() # Trick to get inputs (features) from last_linear

    print('\nLoad datasets')
    tf_img = pretrainedmodels.utils.TransformImage(model)
    train_set = pretrainedmodels.datasets.Voc2007Classification(args.dir_datasets, 'train', transform=tf_img)
    val_set = pretrainedmodels.datasets.Voc2007Classification(args.dir_datasets, 'val', transform=tf_img)
    test_set = pretrainedmodels.datasets.Voc2007Classification(args.dir_datasets, 'test', transform=tf_img)

    train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, shuffle=False, num_workers=2)
    val_loader = torch.utils.data.DataLoader(val_set, batch_size=args.batch_size, shuffle=False, num_workers=2)
    test_loader = torch.utils.data.DataLoader(test_set, batch_size=args.batch_size, shuffle=False, num_workers=2)

    print('\nLoad features')
    dir_features = os.path.join(args.dir_outputs, 'data/{}'.format(args.arch))
    path_train_data = '{}/{}set.pth'.format(dir_features, 'train')
    path_val_data = '{}/{}set.pth'.format(dir_features, 'val')
    path_test_data = '{}/{}set.pth'.format(dir_features, 'test')

    features = {}
    targets = {}
    features['train'], targets['train'] = extract_features_targets(model, features_size, train_loader, path_train_data, args.cuda)
    features['val'], targets['val'] = extract_features_targets(model, features_size, val_loader, path_val_data, args.cuda)
    features['test'], targets['test'] = extract_features_targets(model, features_size, test_loader, path_test_data, args.cuda)
    features['trainval'] = torch.cat([features['train'], features['val']], 0)
    targets['trainval'] = torch.cat([targets['train'], targets['val']], 0)

    print('\nTrain Support Vector Machines')
    if args.train_split == 'train' and args.test_split == 'val':
        print('\nHyperparameters search: train multilabel classifiers (on-versus-all) on train/val')
    elif args.train_split == 'trainval' and args.test_split == 'test':
        print('\nEvaluation: train a multilabel classifier on trainval/test')
    else:
        raise ValueError('Trying to train on {} and eval on {}'.format(args.train_split, args.test_split))

    train_multilabel(features, targets, train_set.classes, args.train_split, args.test_split, C=args.C) 
開發者ID:alexandonian,項目名稱:pretorched-x,代碼行數:49,代碼來源:voc2007_extract.py

示例4: main

# 需要導入模塊: import pretrainedmodels [as 別名]
# 或者: from pretrainedmodels import utils [as 別名]
def main():
    global args
    args = parser.parse_args()

    for arch in args.arch:
        # Load Model
        model = pretrainedmodels.__dict__[arch](num_classes=1000,
                                                pretrained='imagenet')
        model.eval()

        path_img = args.path_img
        # Load and Transform one input image
        load_img = utils.LoadImage()
        tf_img = utils.TransformImage(model)

        input_data = load_img(args.path_img) # 3x400x225
        input_data = tf_img(input_data)      # 3x299x299
        input_data = input_data.unsqueeze(0) # 1x3x299x299
        input = torch.autograd.Variable(input_data)

        # Load Imagenet Synsets
        with open('data/imagenet_synsets.txt', 'r') as f:
            synsets = f.readlines()

        # len(synsets)==1001
        # sysnets[0] == background
        synsets = [x.strip() for x in synsets]
        splits = [line.split(' ') for line in synsets]
        key_to_classname = {spl[0]:' '.join(spl[1:]) for spl in splits}

        with open('data/imagenet_classes.txt', 'r') as f:
            class_id_to_key = f.readlines()

        class_id_to_key = [x.strip() for x in class_id_to_key]

        # Make predictions
        output = model(input) # size(1, 1000)
        max, argmax = output.data.squeeze().max(0)
        class_id = argmax[0]
        class_key = class_id_to_key[class_id]
        classname = key_to_classname[class_key]

        print("'{}': '{}' is a '{}'".format(arch, path_img, classname)) 
開發者ID:Cadene,項目名稱:pretrained-models.pytorch,代碼行數:45,代碼來源:imagenet_logits.py

示例5: main

# 需要導入模塊: import pretrainedmodels [as 別名]
# 或者: from pretrainedmodels import utils [as 別名]
def main():
	args = parser.parse_args()

	try:
		with open(args.save) as fp:
			model_info = json.load(fp)
	except:
		model_info = {}

	for m in model_names:
		if not m in model_info.keys():

			# create model
			print("=> creating model '{}'".format(m))
			if args.pretrained.lower() not in ['false', 'none', 'not', 'no', '0']:
				print("=> using pre-trained parameters '{}'".format(args.pretrained))
				model = pretrainedmodels.__dict__[m](num_classes=1000,
					pretrained=args.pretrained)
			else:
				model = pretrainedmodels.__dict__[m]()

			cudnn.benchmark = True

			# Data loading code
			valdir = os.path.join(args.data, 'val')

			# if 'scale' in pretrainedmodels.pretrained_settings[args.arch][args.pretrained]:
			#	 scale = pretrainedmodels.pretrained_settings[args.arch][args.pretrained]['scale']
			# else:
			#	 scale = 0.875
			scale = 0.875

			print('Images transformed from size {} to {}'.format(
				int(round(max(model.input_size) / scale)),
				model.input_size))

			val_tf = pretrainedmodels.utils.TransformImage(model, scale=scale)

			val_loader = torch.utils.data.DataLoader(
				datasets.ImageFolder(valdir, val_tf),
				batch_size=args.batch_size, shuffle=False,
				num_workers=args.workers, pin_memory=True)

			model = model.cuda()

			top1, top5 = validate(val_loader, model)
			model_info[m] = (top1, top5)
	
			with open(args.save, 'w') as fp:
				json.dump(model_info, fp) 
開發者ID:CeLuigi,項目名稱:models-comparison.pytorch,代碼行數:52,代碼來源:compute_accuracy_rate.py


注:本文中的pretrainedmodels.utils方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。