本文整理匯總了Python中pretrainedmodels.utils方法的典型用法代碼示例。如果您正苦於以下問題:Python pretrainedmodels.utils方法的具體用法?Python pretrainedmodels.utils怎麽用?Python pretrainedmodels.utils使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pretrainedmodels
的用法示例。
在下文中一共展示了pretrainedmodels.utils方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: import pretrainedmodels [as 別名]
# 或者: from pretrainedmodels import utils [as 別名]
def main():
args = parser.parse_args()
try:
with open(args.save) as fp:
model_info = json.load(fp)
except:
model_info = {}
for m in model_names:
if not m in model_info.keys():
# create model
print("=> creating model '{}'".format(m))
if args.pretrained.lower() not in ['false', 'none', 'not', 'no', '0']:
print("=> using pre-trained parameters '{}'".format(args.pretrained))
model = pretrainedmodels.__dict__[m](num_classes=1000,
pretrained=args.pretrained)
else:
model = pretrainedmodels.__dict__[m]()
cudnn.benchmark = True
scale = 0.875
print('Images transformed from size {} to {}'.format(
int(round(max(model.input_size) / scale)),
model.input_size))
model = model.cuda().eval()
model = utils.add_flops_counting_methods(model)
model.start_flops_count()
with torch.no_grad():
_ = model(torch.randn(args.batch_size, *model.input_size).cuda(non_blocking=True))
summary, n_params = utils.summary(model.input_size, model)
model_info[m] = (model.compute_average_flops_cost() / 1e9 / 2, n_params.item())
with open(args.save, 'w') as fp:
json.dump(model_info, fp)
示例2: main
# 需要導入模塊: import pretrainedmodels [as 別名]
# 或者: from pretrainedmodels import utils [as 別名]
def main():
global args
args = parser.parse_args()
# Load Model
model = pretrainedmodels.__dict__[args.arch](num_classes=1000,
pretrained='imagenet')
model.eval()
path_img = args.path_img
# Load and Transform one input image
load_img = utils.LoadImage()
tf_img = utils.TransformImage(model)
input_data = load_img(args.path_img) # 3x400x225
input_data = tf_img(input_data) # 3x299x299
input_data = input_data.unsqueeze(0) # 1x3x299x299
input = torch.autograd.Variable(input_data)
# Load Imagenet Synsets
with open('../data/imagenet_synsets.txt', 'r') as f:
synsets = f.readlines()
# len(synsets)==1001
# sysnets[0] == background
synsets = [x.strip() for x in synsets]
splits = [line.split(' ') for line in synsets]
key_to_classname = {spl[0]:' '.join(spl[1:]) for spl in splits}
with open('../data/imagenet_classes.txt', 'r') as f:
class_id_to_key = f.readlines()
class_id_to_key = [x.strip() for x in class_id_to_key]
# Make predictions
output = model(input) # size(1, 1000)
max, argmax = output.data.squeeze().max(0)
class_id = argmax[0]
class_key = class_id_to_key[class_id]
classname = key_to_classname[class_key]
print("'{}': '{}' is a '{}'".format(args.arch, path_img, classname))
示例3: main
# 需要導入模塊: import pretrainedmodels [as 別名]
# 或者: from pretrainedmodels import utils [as 別名]
def main ():
global args
args = parser.parse_args()
print('\nCUDA status: {}'.format(args.cuda))
print('\nLoad pretrained model on Imagenet')
model = pretrainedmodels.__dict__[args.arch](num_classes=1000, pretrained='imagenet')
model.eval()
if args.cuda:
model.cuda()
features_size = model.last_linear.in_features
model.last_linear = pretrainedmodels.utils.Identity() # Trick to get inputs (features) from last_linear
print('\nLoad datasets')
tf_img = pretrainedmodels.utils.TransformImage(model)
train_set = pretrainedmodels.datasets.Voc2007Classification(args.dir_datasets, 'train', transform=tf_img)
val_set = pretrainedmodels.datasets.Voc2007Classification(args.dir_datasets, 'val', transform=tf_img)
test_set = pretrainedmodels.datasets.Voc2007Classification(args.dir_datasets, 'test', transform=tf_img)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, shuffle=False, num_workers=2)
val_loader = torch.utils.data.DataLoader(val_set, batch_size=args.batch_size, shuffle=False, num_workers=2)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=args.batch_size, shuffle=False, num_workers=2)
print('\nLoad features')
dir_features = os.path.join(args.dir_outputs, 'data/{}'.format(args.arch))
path_train_data = '{}/{}set.pth'.format(dir_features, 'train')
path_val_data = '{}/{}set.pth'.format(dir_features, 'val')
path_test_data = '{}/{}set.pth'.format(dir_features, 'test')
features = {}
targets = {}
features['train'], targets['train'] = extract_features_targets(model, features_size, train_loader, path_train_data, args.cuda)
features['val'], targets['val'] = extract_features_targets(model, features_size, val_loader, path_val_data, args.cuda)
features['test'], targets['test'] = extract_features_targets(model, features_size, test_loader, path_test_data, args.cuda)
features['trainval'] = torch.cat([features['train'], features['val']], 0)
targets['trainval'] = torch.cat([targets['train'], targets['val']], 0)
print('\nTrain Support Vector Machines')
if args.train_split == 'train' and args.test_split == 'val':
print('\nHyperparameters search: train multilabel classifiers (on-versus-all) on train/val')
elif args.train_split == 'trainval' and args.test_split == 'test':
print('\nEvaluation: train a multilabel classifier on trainval/test')
else:
raise ValueError('Trying to train on {} and eval on {}'.format(args.train_split, args.test_split))
train_multilabel(features, targets, train_set.classes, args.train_split, args.test_split, C=args.C)
示例4: main
# 需要導入模塊: import pretrainedmodels [as 別名]
# 或者: from pretrainedmodels import utils [as 別名]
def main():
global args
args = parser.parse_args()
for arch in args.arch:
# Load Model
model = pretrainedmodels.__dict__[arch](num_classes=1000,
pretrained='imagenet')
model.eval()
path_img = args.path_img
# Load and Transform one input image
load_img = utils.LoadImage()
tf_img = utils.TransformImage(model)
input_data = load_img(args.path_img) # 3x400x225
input_data = tf_img(input_data) # 3x299x299
input_data = input_data.unsqueeze(0) # 1x3x299x299
input = torch.autograd.Variable(input_data)
# Load Imagenet Synsets
with open('data/imagenet_synsets.txt', 'r') as f:
synsets = f.readlines()
# len(synsets)==1001
# sysnets[0] == background
synsets = [x.strip() for x in synsets]
splits = [line.split(' ') for line in synsets]
key_to_classname = {spl[0]:' '.join(spl[1:]) for spl in splits}
with open('data/imagenet_classes.txt', 'r') as f:
class_id_to_key = f.readlines()
class_id_to_key = [x.strip() for x in class_id_to_key]
# Make predictions
output = model(input) # size(1, 1000)
max, argmax = output.data.squeeze().max(0)
class_id = argmax[0]
class_key = class_id_to_key[class_id]
classname = key_to_classname[class_key]
print("'{}': '{}' is a '{}'".format(arch, path_img, classname))
示例5: main
# 需要導入模塊: import pretrainedmodels [as 別名]
# 或者: from pretrainedmodels import utils [as 別名]
def main():
args = parser.parse_args()
try:
with open(args.save) as fp:
model_info = json.load(fp)
except:
model_info = {}
for m in model_names:
if not m in model_info.keys():
# create model
print("=> creating model '{}'".format(m))
if args.pretrained.lower() not in ['false', 'none', 'not', 'no', '0']:
print("=> using pre-trained parameters '{}'".format(args.pretrained))
model = pretrainedmodels.__dict__[m](num_classes=1000,
pretrained=args.pretrained)
else:
model = pretrainedmodels.__dict__[m]()
cudnn.benchmark = True
# Data loading code
valdir = os.path.join(args.data, 'val')
# if 'scale' in pretrainedmodels.pretrained_settings[args.arch][args.pretrained]:
# scale = pretrainedmodels.pretrained_settings[args.arch][args.pretrained]['scale']
# else:
# scale = 0.875
scale = 0.875
print('Images transformed from size {} to {}'.format(
int(round(max(model.input_size) / scale)),
model.input_size))
val_tf = pretrainedmodels.utils.TransformImage(model, scale=scale)
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, val_tf),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
model = model.cuda()
top1, top5 = validate(val_loader, model)
model_info[m] = (top1, top5)
with open(args.save, 'w') as fp:
json.dump(model_info, fp)