當前位置: 首頁>>代碼示例>>Python>>正文


Python preprocessing.write_tf_examples方法代碼示例

本文整理匯總了Python中preprocessing.write_tf_examples方法的典型用法代碼示例。如果您正苦於以下問題:Python preprocessing.write_tf_examples方法的具體用法?Python preprocessing.write_tf_examples怎麽用?Python preprocessing.write_tf_examples使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在preprocessing的用法示例。


在下文中一共展示了preprocessing.write_tf_examples方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_rotate_pyfunc

# 需要導入模塊: import preprocessing [as 別名]
# 或者: from preprocessing import write_tf_examples [as 別名]
def test_rotate_pyfunc(self):
        num_records = 20
        raw_data = self.create_random_data(num_records)
        tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data)))

        with tempfile.NamedTemporaryFile() as f:
            preprocessing.write_tf_examples(f.name, tfexamples)

            self.reset_random()
            run_one = self.extract_data(f.name, random_rotation=False)

            self.reset_random()
            run_two = self.extract_data(f.name, random_rotation=True)

            self.reset_random()
            run_three = self.extract_data(f.name, random_rotation=True)

        self.assert_rotate_data(run_one, run_two, run_three) 
開發者ID:mlperf,項目名稱:training,代碼行數:20,代碼來源:test_preprocessing.py

示例2: test_tpu_rotate

# 需要導入模塊: import preprocessing [as 別名]
# 或者: from preprocessing import write_tf_examples [as 別名]
def test_tpu_rotate(self):
        num_records = 100
        raw_data = self.create_random_data(num_records)
        tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data)))

        with tempfile.NamedTemporaryFile() as f:
            preprocessing.write_tf_examples(f.name, tfexamples)

            self.reset_random()
            run_one = self.extract_tpu_data(f.name, random_rotation=False)

            self.reset_random()
            run_two = self.extract_tpu_data(f.name, random_rotation=True)

            self.reset_random()
            run_three = self.extract_tpu_data(f.name, random_rotation=True)

        self.assert_rotate_data(run_one, run_two, run_three) 
開發者ID:mlperf,項目名稱:training,代碼行數:20,代碼來源:test_preprocessing.py

示例3: selfplay

# 需要導入模塊: import preprocessing [as 別名]
# 或者: from preprocessing import write_tf_examples [as 別名]
def selfplay(
        load_file: "The path to the network model files",
        output_dir: "Where to write the games"="data/selfplay",
        holdout_dir: "Where to write the games"="data/holdout",
        output_sgf: "Where to write the sgfs"="sgf/",
        readouts: 'How many simulations to run per move'=100,
        verbose: '>=2 will print debug info, >=3 will print boards' = 1,
        resign_threshold: 'absolute value of threshold to resign at' = 0.95,
        holdout_pct: 'how many games to hold out for validation' = 0.05):
    qmeas.start_time('selfplay')
    clean_sgf = os.path.join(output_sgf, 'clean')
    full_sgf = os.path.join(output_sgf, 'full')
    _ensure_dir_exists(clean_sgf)
    _ensure_dir_exists(full_sgf)
    _ensure_dir_exists(output_dir)
    _ensure_dir_exists(holdout_dir)

    with timer("Loading weights from %s ... " % load_file):
        network = dual_net.DualNetwork(load_file)

    with timer("Playing game"):
        player = selfplay_mcts.play(
            network, readouts, resign_threshold, verbose)

    output_name = '{}-{}'.format(int(time.time() * 1000 * 1000), socket.gethostname())
    game_data = player.extract_data()
    with gfile.GFile(os.path.join(clean_sgf, '{}.sgf'.format(output_name)), 'w') as f:
        f.write(player.to_sgf(use_comments=False))
    with gfile.GFile(os.path.join(full_sgf, '{}.sgf'.format(output_name)), 'w') as f:
        f.write(player.to_sgf())

    tf_examples = preprocessing.make_dataset_from_selfplay(game_data)

    # Hold out 5% of games for evaluation.
    if random.random() < holdout_pct:
        fname = os.path.join(holdout_dir, "{}.tfrecord.zz".format(output_name))
    else:
        fname = os.path.join(output_dir, "{}.tfrecord.zz".format(output_name))

    preprocessing.write_tf_examples(fname, tf_examples)
    qmeas.stop_time('selfplay') 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:43,代碼來源:main.py

示例4: selfplay_cache_model

# 需要導入模塊: import preprocessing [as 別名]
# 或者: from preprocessing import write_tf_examples [as 別名]
def selfplay_cache_model(
        network: "The path to the network model files",
        output_dir: "Where to write the games"="data/selfplay",
        holdout_dir: "Where to write the games"="data/holdout",
        output_sgf: "Where to write the sgfs"="sgf/",
        readouts: 'How many simulations to run per move'=100,
        verbose: '>=2 will print debug info, >=3 will print boards' = 1,
        resign_threshold: 'absolute value of threshold to resign at' = 0.95,
        holdout_pct: 'how many games to hold out for validation' = 0.05):
    qmeas.start_time('selfplay')
    clean_sgf = os.path.join(output_sgf, 'clean')
    full_sgf = os.path.join(output_sgf, 'full')
    _ensure_dir_exists(clean_sgf)
    _ensure_dir_exists(full_sgf)
    _ensure_dir_exists(output_dir)
    _ensure_dir_exists(holdout_dir)

    with timer("Playing game"):
        player = selfplay_mcts.play(
            network, readouts, resign_threshold, verbose)

    output_name = '{}-{}'.format(int(time.time() * 1000 * 1000), socket.gethostname())
    game_data = player.extract_data()
    with gfile.GFile(os.path.join(clean_sgf, '{}.sgf'.format(output_name)), 'w') as f:
        f.write(player.to_sgf(use_comments=False))
    with gfile.GFile(os.path.join(full_sgf, '{}.sgf'.format(output_name)), 'w') as f:
        f.write(player.to_sgf())

    tf_examples = preprocessing.make_dataset_from_selfplay(game_data)

    # Hold out 5% of games for evaluation.
    if random.random() < holdout_pct:
        fname = os.path.join(holdout_dir, "{}.tfrecord.zz".format(output_name))
    else:
        fname = os.path.join(output_dir, "{}.tfrecord.zz".format(output_name))

    preprocessing.write_tf_examples(fname, tf_examples)
    qmeas.stop_time('selfplay') 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:40,代碼來源:main.py

示例5: test_serialize_round_trip

# 需要導入模塊: import preprocessing [as 別名]
# 或者: from preprocessing import write_tf_examples [as 別名]
def test_serialize_round_trip(self):
        np.random.seed(1)
        raw_data = self.create_random_data(10)
        tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data)))

        with tempfile.NamedTemporaryFile() as f:
            preprocessing.write_tf_examples(f.name, tfexamples)
            recovered_data = self.extract_data(f.name)

        self.assertEqualData(raw_data, recovered_data) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:12,代碼來源:test_preprocessing.py

示例6: test_filter

# 需要導入模塊: import preprocessing [as 別名]
# 或者: from preprocessing import write_tf_examples [as 別名]
def test_filter(self):
        raw_data = self.create_random_data(100)
        tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data)))

        with tempfile.NamedTemporaryFile() as f:
            preprocessing.write_tf_examples(f.name, tfexamples)
            recovered_data = self.extract_data(f.name, filter_amount=.05)

        # TODO: this will flake out very infrequently.  Use set_random_seed
        self.assertLess(len(recovered_data), 50) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:12,代碼來源:test_preprocessing.py

示例7: test_serialize_round_trip

# 需要導入模塊: import preprocessing [as 別名]
# 或者: from preprocessing import write_tf_examples [as 別名]
def test_serialize_round_trip(self):
    np.random.seed(1)
    raw_data = self.create_random_data(10)
    tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data)))

    with tempfile.NamedTemporaryFile() as f:
      preprocessing.write_tf_examples(f.name, tfexamples)
      recovered_data = self.extract_data(f.name)

    self.assertEqualData(raw_data, recovered_data) 
開發者ID:itsamitgoel,項目名稱:Gun-Detector,代碼行數:12,代碼來源:preprocessing_test.py

示例8: test_filter

# 需要導入模塊: import preprocessing [as 別名]
# 或者: from preprocessing import write_tf_examples [as 別名]
def test_filter(self):
    raw_data = self.create_random_data(100)
    tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data)))

    with tempfile.NamedTemporaryFile() as f:
      preprocessing.write_tf_examples(f.name, tfexamples)
      recovered_data = self.extract_data(f.name, filter_amount=.05)

    self.assertLess(len(recovered_data), 50) 
開發者ID:itsamitgoel,項目名稱:Gun-Detector,代碼行數:11,代碼來源:preprocessing_test.py

示例9: test_serialize_round_trip_no_parse

# 需要導入模塊: import preprocessing [as 別名]
# 或者: from preprocessing import write_tf_examples [as 別名]
def test_serialize_round_trip_no_parse(self):
    np.random.seed(1)
    raw_data = self.create_random_data(10)
    tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data)))

    with tempfile.NamedTemporaryFile() as start_file, \
        tempfile.NamedTemporaryFile() as rewritten_file:
      preprocessing.write_tf_examples(start_file.name, tfexamples)
      # We want to test that the rewritten, shuffled file contains correctly
      # serialized tf.Examples.
      batch_size = 4
      batches = list(preprocessing.shuffle_tf_examples(
          1000, batch_size, [start_file.name]))
      # 2 batches of 4, 1 incomplete batch of 2.
      self.assertEqual(len(batches), 3)

      # concatenate list of lists into one list
      all_batches = list(itertools.chain.from_iterable(batches))

      for _ in batches:
        preprocessing.write_tf_examples(
            rewritten_file.name, all_batches, serialize=False)

      original_data = self.extract_data(start_file.name)
      recovered_data = self.extract_data(rewritten_file.name)

    # stuff is shuffled, so sort before checking equality
    def sort_key(nparray_tuple):
      return nparray_tuple[2]
    original_data = sorted(original_data, key=sort_key)
    recovered_data = sorted(recovered_data, key=sort_key)

    self.assertEqualData(original_data, recovered_data) 
開發者ID:itsamitgoel,項目名稱:Gun-Detector,代碼行數:35,代碼來源:preprocessing_test.py

示例10: flush

# 需要導入模塊: import preprocessing [as 別名]
# 或者: from preprocessing import write_tf_examples [as 別名]
def flush(self, path):
        # random.shuffle on deque is O(n^2) convert to list for O(n)
        self.examples = list(self.examples)
        random.shuffle(self.examples)
        with timer("Writing examples to " + path):
            preprocessing.write_tf_examples(
                path, [ex[1] for ex in self.examples], serialize=False)
        self.examples.clear()
        self.examples = deque(maxlen=self.max_size) 
開發者ID:mlperf,項目名稱:training,代碼行數:11,代碼來源:example_buffer.py

示例11: gather

# 需要導入模塊: import preprocessing [as 別名]
# 或者: from preprocessing import write_tf_examples [as 別名]
def gather(
        input_directory: 'where to look for games'='data/selfplay/',
        output_directory: 'where to put collected games'='data/training_chunks/',
        examples_per_record: 'how many tf.examples to gather in each chunk'=EXAMPLES_PER_RECORD):
    qmeas.start_time('gather')
    _ensure_dir_exists(output_directory)
    models = [model_dir.strip('/')
              for model_dir in sorted(gfile.ListDirectory(input_directory))[-50:]]
    with timer("Finding existing tfrecords..."):
        model_gamedata = {
            model: gfile.Glob(
                os.path.join(input_directory, model, '*.tfrecord.zz'))
            for model in models
        }
    print("Found %d models" % len(models))
    for model_name, record_files in sorted(model_gamedata.items()):
        print("    %s: %s files" % (model_name, len(record_files)))

    meta_file = os.path.join(output_directory, 'meta.txt')
    try:
        with gfile.GFile(meta_file, 'r') as f:
            already_processed = set(f.read().split())
    except tf.errors.NotFoundError:
        already_processed = set()

    num_already_processed = len(already_processed)

    for model_name, record_files in sorted(model_gamedata.items()):
        if set(record_files) <= already_processed:
            continue
        print("Gathering files for %s:" % model_name)
        for i, example_batch in enumerate(
                tqdm(preprocessing.shuffle_tf_examples(examples_per_record, record_files))):
            output_record = os.path.join(output_directory,
                                         '{}-{}.tfrecord.zz'.format(model_name, str(i)))
            preprocessing.write_tf_examples(
                output_record, example_batch, serialize=False)
        already_processed.update(record_files)

    print("Processed %s new files" %
          (len(already_processed) - num_already_processed))
    with gfile.GFile(meta_file, 'w') as f:
        f.write('\n'.join(sorted(already_processed)))
    qmeas.stop_time('gather') 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:46,代碼來源:main.py

示例12: selfplay

# 需要導入模塊: import preprocessing [as 別名]
# 或者: from preprocessing import write_tf_examples [as 別名]
def selfplay(model_name, trained_models_dir, selfplay_dir, holdout_dir, sgf_dir,
             params):
  """Perform selfplay with a specific model.

  Args:
    model_name: The name of the model used for selfplay.
    trained_models_dir: The path to the model files.
    selfplay_dir: Where to write the games. Set as 'base_dir/data/selfplay/'.
    holdout_dir: Where to write the holdout data. Set as
      'base_dir/data/holdout/'.
    sgf_dir: Where to write the sgf (Smart Game Format) files. Set as
      'base_dir/sgf/'.
    params: An object of hyperparameters for the model.
  """
  print('Playing a game with model {}'.format(model_name))
  # Set paths for the model with 'model_name'
  model_path = os.path.join(trained_models_dir, model_name)
  output_dir = os.path.join(selfplay_dir, model_name)
  holdout_dir = os.path.join(holdout_dir, model_name)
  # clean_sgf is to write sgf file without comments.
  # full_sgf is to write sgf file with comments.
  clean_sgf = os.path.join(sgf_dir, model_name, 'clean')
  full_sgf = os.path.join(sgf_dir, model_name, 'full')

  _ensure_dir_exists(output_dir)
  _ensure_dir_exists(holdout_dir)
  _ensure_dir_exists(clean_sgf)
  _ensure_dir_exists(full_sgf)

  with utils.logged_timer('Loading weights from {} ... '.format(model_path)):
    network = dualnet.DualNetRunner(model_path, params)

  with utils.logged_timer('Playing game'):
    player = selfplay_mcts.play(
        params.board_size, network, params.selfplay_readouts,
        params.selfplay_resign_threshold, params.simultaneous_leaves,
        params.selfplay_verbose)

  output_name = '{}-{}'.format(int(time.time()), socket.gethostname())

  def _write_sgf_data(dir_sgf, use_comments):
    with tf.gfile.GFile(
        os.path.join(dir_sgf, '{}.sgf'.format(output_name)), 'w') as f:
      f.write(player.to_sgf(use_comments=use_comments))

  _write_sgf_data(clean_sgf, use_comments=False)
  _write_sgf_data(full_sgf, use_comments=True)

  game_data = player.extract_data()
  tf_examples = preprocessing.make_dataset_from_selfplay(game_data, params)

  # Hold out 5% of games for evaluation.
  if random.random() < params.holdout_pct:
    fname = os.path.join(
        holdout_dir, ('{}'+_TF_RECORD_SUFFIX).format(output_name))
  else:
    fname = os.path.join(
        output_dir, ('{}'+_TF_RECORD_SUFFIX).format(output_name))

  preprocessing.write_tf_examples(fname, tf_examples) 
開發者ID:itsamitgoel,項目名稱:Gun-Detector,代碼行數:62,代碼來源:minigo.py

示例13: gather

# 需要導入模塊: import preprocessing [as 別名]
# 或者: from preprocessing import write_tf_examples [as 別名]
def gather(selfplay_dir, training_chunk_dir, params):
  """Gather selfplay data into large training chunk.

  Args:
    selfplay_dir: Where to look for games. Set as 'base_dir/data/selfplay/'.
    training_chunk_dir: where to put collected games. Set as
      'base_dir/data/training_chunks/'.
    params: An object of hyperparameters for the model.
  """
  # Check the selfplay data from the most recent 50 models.
  _ensure_dir_exists(training_chunk_dir)
  sorted_model_dirs = sorted(tf.gfile.ListDirectory(selfplay_dir))
  models = [model_dir.strip('/')
            for model_dir in sorted_model_dirs[-params.gather_generation:]]

  with utils.logged_timer('Finding existing tfrecords...'):
    model_gamedata = {
        model: tf.gfile.Glob(
            os.path.join(selfplay_dir, model, '*'+_TF_RECORD_SUFFIX))
        for model in models
    }
  print('Found {} models'.format(len(models)))
  for model_name, record_files in sorted(model_gamedata.items()):
    print('    {}: {} files'.format(model_name, len(record_files)))

  meta_file = os.path.join(training_chunk_dir, 'meta.txt')
  try:
    with tf.gfile.GFile(meta_file, 'r') as f:
      already_processed = set(f.read().split())
  except tf.errors.NotFoundError:
    already_processed = set()

  num_already_processed = len(already_processed)

  for model_name, record_files in sorted(model_gamedata.items()):
    if set(record_files) <= already_processed:
      continue
    print('Gathering files from {}:'.format(model_name))
    tf_examples = preprocessing.shuffle_tf_examples(
        params.shuffle_buffer_size, params.examples_per_chunk, record_files)
    # tqdm to make the loops show a smart progress meter
    for i, example_batch in enumerate(tf_examples):
      output_record = os.path.join(
          training_chunk_dir,
          ('{}-{}'+_TF_RECORD_SUFFIX).format(model_name, str(i)))
      preprocessing.write_tf_examples(
          output_record, example_batch, serialize=False)
    already_processed.update(record_files)

  print('Processed {} new files'.format(
      len(already_processed) - num_already_processed))
  with tf.gfile.GFile(meta_file, 'w') as f:
    f.write('\n'.join(sorted(already_processed))) 
開發者ID:itsamitgoel,項目名稱:Gun-Detector,代碼行數:55,代碼來源:minigo.py

示例14: selfplay

# 需要導入模塊: import preprocessing [as 別名]
# 或者: from preprocessing import write_tf_examples [as 別名]
def selfplay():
    _, model_name = get_latest_model()
    try:
        games = gfile.Glob(os.path.join(PATHS.SELFPLAY_DIR, model_name, '*.zz'))
        if len(games) > GLOBAL_PARAMETER_STORE.MAX_GAMES_PER_GENERATION:
            logger.info("{} has enough games ({})".format(model_name, len(games)))
            time.sleep(600)
            sys.exit(1)
    except:
        pass

    for game_idx in range(GLOBAL_PARAMETER_STORE.NUM_SELFPLAY_GAMES):
        logger.info('================================================')
        logger.info("Playing game {} with model {}".format(game_idx, model_name))
        logger.info('================================================')
        model_save_path = os.path.join(PATHS.MODELS_DIR, model_name)
        game_output_dir = os.path.join(PATHS.SELFPLAY_DIR, model_name)
        game_holdout_dir = os.path.join(PATHS.HOLDOUT_DIR, model_name)
        sgf_dir = os.path.join(PATHS.SGF_DIR, model_name)

        clean_sgf = os.path.join(sgf_dir, 'clean')
        full_sgf = os.path.join(sgf_dir, 'full')
        os.makedirs(clean_sgf, exist_ok=True)
        os.makedirs(full_sgf, exist_ok=True)
        os.makedirs(game_output_dir, exist_ok=True)
        os.makedirs(game_holdout_dir, exist_ok=True)

        with timer("Loading weights from %s ... " % model_save_path):
            network = PolicyValueNetwork(model_save_path)

        with timer("Playing game"):
            agent = alphagozero_agent.play_against_self(network, GLOBAL_PARAMETER_STORE.SELFPLAY_READOUTS)

        output_name = '{}-{}'.format(int(time.time()), socket.gethostname())
        game_play = agent.extract_data()
        with gfile.GFile(os.path.join(clean_sgf, '{}.sgf'.format(output_name)), 'w') as f:
            f.write(agent.to_sgf(use_comments=False))
        with gfile.GFile(os.path.join(full_sgf, '{}.sgf'.format(output_name)), 'w') as f:
            f.write(agent.to_sgf())

        tf_examples = preprocessing.create_dataset_from_selfplay(game_play)

        # We reserve 5% of games played for validation
        holdout = random.random() < GLOBAL_PARAMETER_STORE.HOLDOUT
        if holdout:
            to_save_dir = game_holdout_dir
        else:
            to_save_dir = game_output_dir
        tf_record_path = os.path.join(to_save_dir, "{}.tfrecord.zz".format(output_name))

        preprocessing.write_tf_examples(tf_record_path, tf_examples) 
開發者ID:PacktPublishing,項目名稱:Python-Reinforcement-Learning-Projects,代碼行數:53,代碼來源:controller.py

示例15: aggregate

# 需要導入模塊: import preprocessing [as 別名]
# 或者: from preprocessing import write_tf_examples [as 別名]
def aggregate():
    logger.info("Gathering game results")

    os.makedirs(PATHS.TRAINING_CHUNK_DIR, exist_ok=True)
    os.makedirs(PATHS.SELFPLAY_DIR, exist_ok=True)
    models = [model_dir.strip('/')
              for model_dir in sorted(gfile.ListDirectory(PATHS.SELFPLAY_DIR))[-50:]]

    with timer("Finding existing tfrecords..."):
        model_gamedata = {
            model: gfile.Glob(
                os.path.join(PATHS.SELFPLAY_DIR, model, '*.zz'))
            for model in models
        }
    logger.info("Found %d models" % len(models))
    for model_name, record_files in sorted(model_gamedata.items()):
        logger.info("    %s: %s files" % (model_name, len(record_files)))

    meta_file = os.path.join(PATHS.TRAINING_CHUNK_DIR, 'meta.txt')
    try:
        with gfile.GFile(meta_file, 'r') as f:
            already_processed = set(f.read().split())
    except tf.errors.NotFoundError:
        already_processed = set()

    num_already_processed = len(already_processed)

    for model_name, record_files in sorted(model_gamedata.items()):
        if set(record_files) <= already_processed:
            continue
        logger.info("Gathering files for %s:" % model_name)
        for i, example_batch in enumerate(
                tqdm(preprocessing.shuffle_tf_examples(GLOBAL_PARAMETER_STORE.EXAMPLES_PER_RECORD, record_files))):
            output_record = os.path.join(PATHS.TRAINING_CHUNK_DIR,
                                         '{}-{}.tfrecord.zz'.format(model_name, str(i)))
            preprocessing.write_tf_examples(
                output_record, example_batch, serialize=False)
        already_processed.update(record_files)

    logger.info("Processed %s new files" %
          (len(already_processed) - num_already_processed))
    with gfile.GFile(meta_file, 'w') as f:
        f.write('\n'.join(sorted(already_processed))) 
開發者ID:PacktPublishing,項目名稱:Python-Reinforcement-Learning-Projects,代碼行數:45,代碼來源:controller.py


注:本文中的preprocessing.write_tf_examples方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。