本文整理匯總了Python中preprocessing.make_tf_example方法的典型用法代碼示例。如果您正苦於以下問題:Python preprocessing.make_tf_example方法的具體用法?Python preprocessing.make_tf_example怎麽用?Python preprocessing.make_tf_example使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類preprocessing
的用法示例。
在下文中一共展示了preprocessing.make_tf_example方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_rotate_pyfunc
# 需要導入模塊: import preprocessing [as 別名]
# 或者: from preprocessing import make_tf_example [as 別名]
def test_rotate_pyfunc(self):
num_records = 20
raw_data = self.create_random_data(num_records)
tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data)))
with tempfile.NamedTemporaryFile() as f:
preprocessing.write_tf_examples(f.name, tfexamples)
self.reset_random()
run_one = self.extract_data(f.name, random_rotation=False)
self.reset_random()
run_two = self.extract_data(f.name, random_rotation=True)
self.reset_random()
run_three = self.extract_data(f.name, random_rotation=True)
self.assert_rotate_data(run_one, run_two, run_three)
示例2: test_tpu_rotate
# 需要導入模塊: import preprocessing [as 別名]
# 或者: from preprocessing import make_tf_example [as 別名]
def test_tpu_rotate(self):
num_records = 100
raw_data = self.create_random_data(num_records)
tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data)))
with tempfile.NamedTemporaryFile() as f:
preprocessing.write_tf_examples(f.name, tfexamples)
self.reset_random()
run_one = self.extract_tpu_data(f.name, random_rotation=False)
self.reset_random()
run_two = self.extract_tpu_data(f.name, random_rotation=True)
self.reset_random()
run_three = self.extract_tpu_data(f.name, random_rotation=True)
self.assert_rotate_data(run_one, run_two, run_three)
示例3: test_serialize_round_trip
# 需要導入模塊: import preprocessing [as 別名]
# 或者: from preprocessing import make_tf_example [as 別名]
def test_serialize_round_trip(self):
np.random.seed(1)
raw_data = self.create_random_data(10)
tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data)))
with tempfile.NamedTemporaryFile() as f:
preprocessing.write_tf_examples(f.name, tfexamples)
recovered_data = self.extract_data(f.name)
self.assertEqualData(raw_data, recovered_data)
示例4: test_filter
# 需要導入模塊: import preprocessing [as 別名]
# 或者: from preprocessing import make_tf_example [as 別名]
def test_filter(self):
raw_data = self.create_random_data(100)
tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data)))
with tempfile.NamedTemporaryFile() as f:
preprocessing.write_tf_examples(f.name, tfexamples)
recovered_data = self.extract_data(f.name, filter_amount=.05)
# TODO: this will flake out very infrequently. Use set_random_seed
self.assertLess(len(recovered_data), 50)
示例5: test_serialize_round_trip_no_parse
# 需要導入模塊: import preprocessing [as 別名]
# 或者: from preprocessing import make_tf_example [as 別名]
def test_serialize_round_trip_no_parse(self):
np.random.seed(1)
raw_data = self.create_random_data(10)
tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data)))
with tempfile.NamedTemporaryFile() as start_file, \
tempfile.NamedTemporaryFile() as rewritten_file:
preprocessing.write_tf_examples(start_file.name, tfexamples)
# We want to test that the rewritten, shuffled file contains correctly
# serialized tf.Examples.
batch_size = 4
batches = list(preprocessing.shuffle_tf_examples(
batch_size, [start_file.name]))
# 2 batches of 4, 1 incomplete batch of 2.
self.assertEqual(len(batches), 3)
# concatenate list of lists into one list
all_batches = list(itertools.chain.from_iterable(batches))
for batch in batches:
preprocessing.write_tf_examples(
rewritten_file.name, all_batches, serialize=False)
original_data = self.extract_data(start_file.name)
recovered_data = self.extract_data(rewritten_file.name)
# stuff is shuffled, so sort before checking equality
def sort_key(nparray_tuple): return nparray_tuple[2]
original_data = sorted(original_data, key=sort_key)
recovered_data = sorted(recovered_data, key=sort_key)
self.assertEqualData(original_data, recovered_data)
示例6: test_serialize_round_trip
# 需要導入模塊: import preprocessing [as 別名]
# 或者: from preprocessing import make_tf_example [as 別名]
def test_serialize_round_trip(self):
np.random.seed(1)
raw_data = self.create_random_data(10)
tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data)))
with tempfile.NamedTemporaryFile() as f:
preprocessing.write_tf_examples(f.name, tfexamples)
recovered_data = self.extract_data(f.name)
self.assertEqualData(raw_data, recovered_data)
示例7: test_filter
# 需要導入模塊: import preprocessing [as 別名]
# 或者: from preprocessing import make_tf_example [as 別名]
def test_filter(self):
raw_data = self.create_random_data(100)
tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data)))
with tempfile.NamedTemporaryFile() as f:
preprocessing.write_tf_examples(f.name, tfexamples)
recovered_data = self.extract_data(f.name, filter_amount=.05)
self.assertLess(len(recovered_data), 50)
示例8: test_serialize_round_trip_no_parse
# 需要導入模塊: import preprocessing [as 別名]
# 或者: from preprocessing import make_tf_example [as 別名]
def test_serialize_round_trip_no_parse(self):
np.random.seed(1)
raw_data = self.create_random_data(10)
tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data)))
with tempfile.NamedTemporaryFile() as start_file, \
tempfile.NamedTemporaryFile() as rewritten_file:
preprocessing.write_tf_examples(start_file.name, tfexamples)
# We want to test that the rewritten, shuffled file contains correctly
# serialized tf.Examples.
batch_size = 4
batches = list(preprocessing.shuffle_tf_examples(
1000, batch_size, [start_file.name]))
# 2 batches of 4, 1 incomplete batch of 2.
self.assertEqual(len(batches), 3)
# concatenate list of lists into one list
all_batches = list(itertools.chain.from_iterable(batches))
for _ in batches:
preprocessing.write_tf_examples(
rewritten_file.name, all_batches, serialize=False)
original_data = self.extract_data(start_file.name)
recovered_data = self.extract_data(rewritten_file.name)
# stuff is shuffled, so sort before checking equality
def sort_key(nparray_tuple):
return nparray_tuple[2]
original_data = sorted(original_data, key=sort_key)
recovered_data = sorted(recovered_data, key=sort_key)
self.assertEqualData(original_data, recovered_data)
示例9: convert
# 需要導入模塊: import preprocessing [as 別名]
# 或者: from preprocessing import make_tf_example [as 別名]
def convert(paths):
position, in_path, out_path = paths
assert tf.gfile.Exists(in_path)
assert tf.gfile.Exists(os.path.dirname(out_path))
in_size = get_size(in_path)
if tf.gfile.Exists(out_path):
# Make sure out_path is about the size of in_path
size = get_size(out_path)
error = (size - in_size) / (in_size + 1)
# 5% smaller to 20% larger
if -0.05 < error < 0.20:
return out_path + " already existed"
return "ERROR on file size ({:.1f}% diff) {}".format(
100 * error, out_path)
num_batches = dual_net.EXAMPLES_PER_GENERATION // FLAGS.batch_size + 1
with tf.python_io.TFRecordWriter(out_path, OPTS) as writer:
record_iter = tqdm(
batched_reader(in_path),
desc=os.path.basename(in_path),
position=position,
total=num_batches)
for record in record_iter:
xs, rs = preprocessing.batch_parse_tf_example(len(record), record)
# Undo cast in batch_parse_tf_example.
xs = tf.cast(xs, tf.uint8)
# map the rotation function.
x_rot, r_rot = preprocessing._random_rotation(xs, rs)
with tf.Session() as sess:
x_rot, r_rot = sess.run([x_rot, r_rot])
tf.reset_default_graph()
pi_rot = r_rot['pi_tensor']
val_rot = r_rot['value_tensor']
for r, x, pi, val in zip(record, x_rot, pi_rot, val_rot):
record_out = preprocessing.make_tf_example(x, pi, val)
serialized = record_out.SerializeToString()
writer.write(serialized)
assert len(r) == len(serialized), (len(r), len(serialized))