當前位置: 首頁>>代碼示例>>Python>>正文


Python preprocess.preprocess方法代碼示例

本文整理匯總了Python中preprocess.preprocess方法的典型用法代碼示例。如果您正苦於以下問題:Python preprocess.preprocess方法的具體用法?Python preprocess.preprocess怎麽用?Python preprocess.preprocess使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在preprocess的用法示例。


在下文中一共展示了preprocess.preprocess方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: import preprocess [as 別名]
# 或者: from preprocess import preprocess [as 別名]
def main():
    parser = argparse.ArgumentParser(description='Deep BiLSTM with Residual')
    add_arguments(parser)
    args = parser.parse_args()
    print(args)
    hparams = tf.contrib.training.HParams(**vars(args))
    # check GPU device
    utils.print_out("# Devices visible to TensorFlow: %s" % repr(tf.Session().list_devices()))
    #  create dirs
    expr_dir, config_dir, log_dir, data_dir, model_dir, figure_dir, result_dir = create_dirs(hparams)
    # save hyperameter
    check_and_save_hparams(config_dir, hparams)

    stage = 'test'  # preprocess','train_eval', or 'test'
    assert stage in [, 'train_eval', 'test'], 'stage not recognized'
    utils.print_out('stage: %s' % stage)
    # if stage == 'preprocess':
    #     preprocess.preprocess(hparams, data_dir)
        # the data are stored in the data_dir for the training step
    if stage == 'train_eval':
        process.train_eval(hparams, data_dir, model_dir, log_dir)
    if stage == 'test':
        process.infer(hparams, data_dir, model_dir, result_dir) 
開發者ID:psu1,項目名稱:DeepRNN,代碼行數:25,代碼來源:train.py

示例2: data_generator

# 需要導入模塊: import preprocess [as 別名]
# 或者: from preprocess import preprocess [as 別名]
def data_generator(data, labels, max_len=200000, batch_size=64, shuffle=True):
    idx = np.arange(len(data))
    if shuffle:
        np.random.shuffle(idx)
    batches = [idx[range(batch_size*i, min(len(data), batch_size*(i+1)))] for i in range(len(data)//batch_size+1)]
    while True:
        for i in batches:
            xx = preprocess(data[i], max_len)[0]
            yy = labels[i]
            yield (xx, yy) 
開發者ID:j40903272,項目名稱:MalConv-keras,代碼行數:12,代碼來源:utils.py

示例3: load_imgs

# 需要導入模塊: import preprocess [as 別名]
# 或者: from preprocess import preprocess [as 別名]
def load_imgs():
    global imgs
    global wheels

    for p in purposes:
        for epoch_id in epochs[p]:
            print ('processing and loading "{}" epoch {} into memory, current num of imgs is {}...'.format(p, epoch_id, len(imgs[p])))

            # vid_path = cm.jn(data_dir, 'epoch{:0>2}_front.mkv'.format(epoch_id))
            vid_path = cm.jn(data_dir, 'out-video-{}.avi'.format(epoch_id))

            assert os.path.isfile(vid_path)

            frame_count = cm.frame_count(vid_path)

            cap = cv2.VideoCapture(vid_path)

            # csv_path = cm.jn(data_dir, 'epoch{:0>2}_steering.csv'.format(epoch_id))
            csv_path = cm.jn(data_dir, 'out-key-{}.csv'.format(epoch_id))
            assert os.path.isfile(csv_path)

            rows = cm.fetch_csv_data(csv_path)
            print ("{}, {}".format(len(rows), frame_count))
            assert frame_count == len(rows)
            yy = [[float(row['wheel'])] for row in rows]

            while True:
                ret, img = cap.read()
                if not ret:
                    break

                img = preprocess.preprocess(img)
                imgs[p].append(img)

            wheels[p].extend(yy)
            assert len(imgs[p]) == len(wheels[p])

            cap.release() 
開發者ID:mbechtel2,項目名稱:DeepPicar-v2,代碼行數:40,代碼來源:data_shuffled.py

示例4: gen_adv_samples

# 需要導入模塊: import preprocess [as 別名]
# 或者: from preprocess import preprocess [as 別名]
def gen_adv_samples(model, fn_list, pad_percent=0.1, step_size=0.001, thres=0.5):
    
    ###   search for nearest neighbor in embedding space ###
    def emb_search(org, adv, pad_idx, pad_len, neigh):
        out = org.copy()
        for idx in range(pad_idx, pad_idx+pad_len):
            target = adv[idx].reshape(1, -1)
            best_idx = neigh.kneighbors(target, 1, False)[0][0]
            out[0][idx] = best_idx
        return out
    
    
    max_len = int(model.input.shape[1])
    emb_layer = model.layers[1]
    emb_weight = emb_layer.get_weights()[0]
    inp2emb = K.function([model.input]+ [K.learning_phase()], [emb_layer.output]) # [function] Map sequence to embedding 
    
    # Build neighbor searches
    neigh = NearestNeighbors(1)
    neigh.fit(emb_weight)
    
    log = utils.logger()
    adv_samples = []

    for e, fn in enumerate(fn_list):

        ###   run one file at a time due to different padding length, [slow]
        inp, len_list = preprocess([fn], max_len)
        inp_emb = np.squeeze(np.array(inp2emb([inp, False])), 0)

        pad_idx = len_list[0]
        pad_len = max(min(int(len_list[0]*pad_percent), max_len-pad_idx), 0)
        org_score = model.predict(inp)[0][0]    ### origianl score, 0 -> malicious, 1 -> benign
        loss, pred = float('nan'), float('nan')
        
        if pad_len > 0:
            
            if org_score < thres:
                adv_emb, gradient, loss = fgsm(model, inp_emb, pad_idx, pad_len, e, step_size)
                adv = emb_search(inp, adv_emb[0], pad_idx, pad_len, neigh)
                pred = model.predict(adv)[0][0]
                final_adv = adv[0][:pad_idx+pad_len]
                
            else: # use origin file
                final_adv = inp[0][:pad_idx]
        
        
        log.write(fn, org_score, pad_idx, pad_len, loss, pred)
        
        # sequence to bytes
        bin_adv = bytes(list(final_adv))
        adv_samples.append(bin_adv)
        
    return adv_samples, log 
開發者ID:j40903272,項目名稱:MalConv-keras,代碼行數:56,代碼來源:gen_adversarial.py

示例5: process_epoch

# 需要導入模塊: import preprocess [as 別名]
# 或者: from preprocess import preprocess [as 別名]
def process_epoch(epoch_id):
    print '---------- processing video for epoch {} ----------'.format(epoch_id)
    vid_path = cm.jn(params.data_dir, 'out-video-{}.avi'.format(epoch_id))
    frame_count = cm.frame_count(vid_path)        
    
    vid_scaled_path = cm.jn(params.data_dir, 'out-video-{}-scaled.avi'.format(epoch_id))
    if not os.path.exists(vid_scaled_path):
        assert os.path.isfile(vid_path)
        os.system("ffmpeg -i " + vid_path + " -vf scale=1280:720 " + vid_scaled_path)
        print("ffmpeg -i " + vid_path + " -vf scale=1280:720 " + vid_scaled_path)
    vid_path = vid_scaled_path
    
    cap = cv2.VideoCapture(vid_path)

    machine_steering = []

    print 'performing inference...'
    time_start = time.time()
    for frame_id in xrange(frame_count):
        ret, img = cap.read()
        assert ret

        prep_start = time.time()
        img = preprocess.preprocess(img)

        pred_start = time.time()
        rad = model.y.eval(feed_dict={model.x: [img], model.keep_prob: 1.0})[0][0]
        deg = rad2deg(rad)
        pred_end   = time.time()

        prep_time = pred_start - prep_start
        pred_time = pred_end - pred_start

        # print 'pred: {} deg. took {} ms'.format(deg, pred_time * 1000)
        # print 'pred: {} deg (rad={})'.format(deg, rad)

        machine_steering.append(deg)

    cap.release()

    fps = frame_count / (time.time() - time_start)
    print ('completed inference, total frames: {}, average fps: {} Hz'.format(frame_count, round(fps, 1)))
    # print "Machine Steering:", machine_steering
    return machine_steering 
開發者ID:mbechtel2,項目名稱:DeepPicar-v2,代碼行數:46,代碼來源:run.py

示例6: load_imgs_v2

# 需要導入模塊: import preprocess [as 別名]
# 或者: from preprocess import preprocess [as 別名]
def load_imgs_v2():
    global imgs
    global wheels

    for epoch_id in epochs['all']:
        print ('processing and loading epoch {} into memorys. train:{}, val:{}'.format(
            epoch_id, len(imgs['train']), len(imgs['val'])))

        # vid_path = cm.jn(data_dir, 'epoch{:0>2}_front.mkv'.format(epoch_id))
        vid_path = cm.jn(data_dir, 'out-video-{}.avi'.format(epoch_id))

        if not os.path.isfile(vid_path):
            continue

        frame_count = cm.frame_count(vid_path)
        cap = cv2.VideoCapture(vid_path)

        # csv_path = cm.jn(data_dir, 'epoch{:0>2}_steering.csv'.format(epoch_id))
        csv_path = cm.jn(data_dir, 'out-key-{}.csv'.format(epoch_id))
        assert os.path.isfile(csv_path)

        rows = cm.fetch_csv_data(csv_path)
        print ("{}, {}".format(len(rows), frame_count))
        assert frame_count == len(rows)

        for row in rows:
            ret, img = cap.read()
            if not ret:
                break

            img = preprocess.preprocess(img)
            angle = float(row['wheel'])

            if random.random() < params.train_pct:
                imgs['train'].append(img)
                wheels['train'].append([angle])
            else:
                imgs['val'].append(img)
                wheels['val'].append([angle])

        cap.release()

    print ('Total data: train:{}, val:{}'.format(len(imgs['train']), len(imgs['val'])))
    
# load all preprocessed training images into memory 
開發者ID:mbechtel2,項目名稱:DeepPicar-v2,代碼行數:47,代碼來源:data_shuffled.py

示例7: load_batch

# 需要導入模塊: import preprocess [as 別名]
# 或者: from preprocess import preprocess [as 別名]
def load_batch(purpose):
    global current_batch_id
    xx = []
    yy = []

    # fetch the batch definition
    batch_id = current_batch_id[purpose]
    assert batch_id < len(batches[purpose])
    batch = batches[purpose][batch_id]
    epoch_id, frame_start, frame_end = batch['epoch_id'], batch['frame_start'], batch['frame_end']
    assert epoch_id is not None and frame_start is not None and frame_end is not None

    # update the current batch
    current_batch_id[purpose] = (current_batch_id[purpose] + 1) % len(batches[purpose])

    # fetch image and steering data
    vid_path = cm.jn(data_dir, 'epoch{:0>2}_front.mkv'.format(epoch_id))
    assert os.path.isfile(vid_path)
    frame_count = cm.frame_count(vid_path)
    cap = cv2.VideoCapture(vid_path)
    cm.cv2_goto_frame(cap, frame_start)

    csv_path = cm.jn(data_dir, 'epoch{:0>2}_steering.csv'.format(epoch_id))
    assert os.path.isfile(csv_path)
    rows = cm.fetch_csv_data(csv_path)
    assert frame_count == len(rows)
    yy = [[float(row['wheel'])] for row in rows[frame_start:frame_end+1]]

    for frame_id in xrange(frame_start, frame_end+1):
        ret, img = cap.read()
        assert ret

        img = preprocess.preprocess(img)
        
        #cv2.imwrite(os.path.abspath('output/sample_frame.jpg'), img)            

        xx.append(img)

    assert len(xx) == len(yy)

    cap.release()

    return xx, yy 
開發者ID:mbechtel2,項目名稱:DeepPicar-v2,代碼行數:45,代碼來源:data_ordered.py


注:本文中的preprocess.preprocess方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。