本文整理匯總了Python中predict.predict方法的典型用法代碼示例。如果您正苦於以下問題:Python predict.predict方法的具體用法?Python predict.predict怎麽用?Python predict.predict使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類predict
的用法示例。
在下文中一共展示了predict.predict方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: import predict [as 別名]
# 或者: from predict import predict [as 別名]
def main(args):
model_storage_type = args.model_storage_type
if (model_storage_type == "local" or model_storage_type == "oss"):
print ( "The storage type is " + model_storage_type)
else:
raise Exception("Only supports storage types like local and OSS")
if args.job_type == "Predict":
logging.info("starting the predict job")
predict(args)
elif args.job_type == "Train":
logging.info("starting the train job")
model = train(args)
if model is not None:
logging.info("finish the model training, and start to dump model ")
model_path = args.model_path
dump_model(model, model_storage_type, model_path, args)
elif args.job_type == "All":
logging.info("starting the train and predict job")
logging.info("Finish distributed XGBoost job")
示例2: predict
# 需要導入模塊: import predict [as 別名]
# 或者: from predict import predict [as 別名]
def predict(input_file):
config = {"pixel_per_second": 50, "input_shape": [129, 500, 1], "num_classes": 4}
data_generator = SpectrogramGenerator(input_file, config, shuffle=False, run_only_once=True).get_generator()
data = [np.divide(image, 255.0) for image in data_generator]
data = np.stack(data)
# Model Generation
probabilities = model.predict(data)
probabilities = probabilities[3:-5] # ignore first 30 sec and last 50 sec
classes = np.argmax(probabilities, axis=1)
average_prob = np.mean(probabilities, axis=0)
average_class = np.argmax(average_prob)
print(classes, class_labels[average_class], average_prob)
return average_class
示例3: main
# 需要導入模塊: import predict [as 別名]
# 或者: from predict import predict [as 別名]
def main(_):
config = get_configs()
# Check if Uncertainty Quantification mode
if config.UQ:
assert (config.UQ_model_type in ['MVE', 'PIE'])
# Check to see if we are in training or testing mode
if config.train is True:
train_model_uq(config)
else:
predict_uq(config)
else:
# Check to see if we are in training or testing mode
if config.train is True:
train_model(config)
else:
predict(config)
示例4: test
# 需要導入模塊: import predict [as 別名]
# 或者: from predict import predict [as 別名]
def test(i, predict):
model.eval()
t = pre = groud = 0
inf = open("data/dev_data.json", encoding="utf8")
for line in inf:
line = json.loads(line)
text = line["text"]
g_triples = set()
for trip in line["spo_list"]:
g_triples.add((trip["subject"], trip["predicate"], trip["object"]))
p_triples = predict.predict(text)
pre += len(p_triples)
groud += len(g_triples)
t += len(p_triples.intersection(g_triples))
print(
f"test epoch {i+1}/{args.epochs} precision: {t/(pre+0.001):.4f} recall: {t/groud:.4f} f1: {2*t/(pre+groud):.4f}")
return 2*t/(pre+groud)
示例5: eval
# 需要導入模塊: import predict [as 別名]
# 或者: from predict import predict [as 別名]
def eval(root_dir):
languages = get_immediate_subdirectories(root_dir)
# Count all files for each language
for lang in languages:
print(lang)
files = list(recursive_glob(os.path.join(root_dir, lang), "*.mp3"))
classes = []
for file in files:
print(file)
average_class = predict(file)
classes.append(average_class)
y_true = np.full((len(classes)), LABELS[lang])
print(lang)
print(accuracy_score(y_true, classes))
print(classification_report(y_true, classes))
示例6: main
# 需要導入模塊: import predict [as 別名]
# 或者: from predict import predict [as 別名]
def main():
global image
cv2.namedWindow("Input")
cv2.setMouseCallback("Input", click)
output = np.ones((512, 512, 1))
font = cv2.FONT_HERSHEY_SIMPLEX
bottomLeftCornerOfText = (1, 511)
fontScale = 23
fontColor = (0, 0, 0)
lineType = 2
while True:
cv2.imshow("Input", image)
cv2.imshow("Output", output)
key = cv2.waitKey(1) & 0xFF
if key == ord("f"):
cv2.destroyAllWindows()
break
if key == ord("r"):
image = np.ones((640, 640, 1))
if key == ord("p"):
clone = image.copy()
clone = cv2.resize(clone, (32,32))
final = np.zeros((32, 32, 1))
for x in range(len(clone)):
for y in range(len(clone[x])):
final[x][y][0] = clone[x][y]
pred = p.predict(final)
print("Predicted " , pred)
output = np.ones((512, 512, 1))
cv2.putText(output, pred, (10, 500), font, fontScale, fontColor, 10, 2)
示例7: get_tasks
# 需要導入模塊: import predict [as 別名]
# 或者: from predict import predict [as 別名]
def get_tasks():
#get url from form
# url = request.form['url']
url = request.files['url']
#sends url for prediction
sender = predict.predict(url)
#get values from prediction
rec = sender.predict_only()
# #list of out values
# outputlist=[rec]
# #for multiple json apis
# tasks = []
# tasks1 = [
# {
# 'value': outputlist[0],
# },
# ]
# tasks.append(tasks1)
# return jsonify({'tasks': tasks})
return jsonify({'cash': rec})
示例8: get_prediction
# 需要導入模塊: import predict [as 別名]
# 或者: from predict import predict [as 別名]
def get_prediction(file_path):
LABEL_MAP = {
0 : "English",
1 : "German",
2 : "French",
3 : "Spanish"
}
# TODO remove this for production
# predictions = [[0.3, 0.7]]
predictions = predict(file_path, app.config["PROTOTXT"], app.config["MODEL"], app.config["UPLOAD_FOLDER"])
predictions = np.mean(predictions, axis=0).tolist()
print predictions
pred_with_label = {LABEL_MAP[index] : prob for index, prob in enumerate(predictions)}
file_path = file_path + "?cachebuster=%s" % time.time()
result = {
"audio" : {
"url" : "%s" % file_path,
},
"predictions" : pred_with_label
}
return result
示例9: predict_emotion
# 需要導入模塊: import predict [as 別名]
# 或者: from predict import predict [as 別名]
def predict_emotion(self, image):
image.resize([NETWORK.input_size, NETWORK.input_size], refcheck=False)
emotion, confidence = predict(image, self.model, self.shape_predictor)
return emotion, confidence
示例10: main
# 需要導入模塊: import predict [as 別名]
# 或者: from predict import predict [as 別名]
def main(opt):
# load vocab
word2idx, idx2word, vocab = load_vocab(opt)
# load data
# read tokenized text file and convert them to 2d list of words
src_file = opt.src_file
#trg_file = opt.trg_file
#tokenized_train_pairs = read_src_and_trg_files(src_file, trg_file, is_train=False, remove_eos=opt.remove_title_eos) # 2d list of word
if opt.title_guided:
tokenized_src, tokenized_title = read_tokenized_src_file(src_file, remove_eos=opt.remove_title_eos, title_guided=True)
else:
tokenized_src = read_tokenized_src_file(src_file, remove_eos=opt.remove_title_eos, title_guided=False)
tokenized_title = None
# convert the 2d list of words to a list of dictionary, with keys 'src', 'src_oov', 'trg', 'trg_copy', 'src_str', 'trg_str', 'oov_dict', 'oov_list'
# since we don't need the targets during testing, 'trg' and 'trg_copy' are some dummy variables
#test_one2many = build_dataset(tokenized_train_pairs, word2idx, idx2word, opt, mode="one2many", include_original=True)
test_one2many = build_interactive_predict_dataset(tokenized_src, word2idx, idx2word, opt, tokenized_title)
# build the data loader
test_one2many_dataset = KeyphraseDataset(test_one2many, word2idx=word2idx, idx2word=idx2word,
type='one2many', delimiter_type=opt.delimiter_type, load_train=False, remove_src_eos=opt.remove_src_eos, title_guided=opt.title_guided)
test_loader = DataLoader(dataset=test_one2many_dataset,
collate_fn=test_one2many_dataset.collate_fn_one2many,
num_workers=opt.batch_workers, batch_size=opt.batch_size, pin_memory=True,
shuffle=False)
# init the pretrained model
model = predict.init_pretrained_model(opt)
# Print out predict path
print("Prediction path: %s" % opt.pred_path)
# predict the keyphrases of the src file and output it to opt.pred_path/predictions.txt
predict.predict(test_loader, model, opt)
示例11: main
# 需要導入模塊: import predict [as 別名]
# 或者: from predict import predict [as 別名]
def main():
# Get Model:
model_file = open('Data/Model/model.json', 'r')
model = model_file.read()
model_file.close()
model = model_from_json(model)
model.load_weights("Data/Model/weights.h5")
print('AI start now!')
while 1:
# Get screenshot:
screen = ImageGrab.grab()
# Image to numpy array:
screen = np.array(screen)
# 4 channel(PNG) to 3 channel(JPG)
Y = predict(model, screen)
if Y == [0,0,0,0]:
# Not action
continue
elif Y[0] == -1 and Y[1] == -1:
# Only keyboard action.
key = get_key(Y[3])
if Y[2] == 1:
# Press:
press(key)
else:
# Release:
release(key)
elif Y[2] == 0 and Y[3] == 0:
# Only mouse action.
click(Y[0], Y[1])
else:
# Mouse and keyboard action.
# Mouse:
click(Y[0], Y[1])
# Keyboard:
key = get_key(Y[3])
if Y[2] == 1:
# Press:
press(key)
else:
# Release:
release(key)
示例12: process_opt
# 需要導入模塊: import predict [as 別名]
# 或者: from predict import predict [as 別名]
def process_opt(opt):
if opt.seed > 0:
torch.manual_seed(opt.seed)
if torch.cuda.is_available():
if not opt.gpuid:
opt.gpuid = 0
opt.device = torch.device("cuda:%d" % opt.gpuid)
else:
opt.device = torch.device("cpu")
opt.gpuid = -1
print("CUDA is not available, fall back to CPU.")
opt.exp = 'predict.' + opt.exp
if opt.one2many:
opt.exp += '.one2many'
if opt.one2many_mode == 1:
opt.exp += '.cat'
if opt.copy_attention:
opt.exp += '.copy'
if opt.coverage_attn:
opt.exp += '.coverage'
if opt.review_attn:
opt.exp += '.review'
if opt.orthogonal_loss:
opt.exp += '.orthogonal'
if opt.use_target_encoder:
opt.exp += '.target_encode'
if hasattr(opt, 'bidirectional') and opt.bidirectional:
opt.exp += '.bi-directional'
else:
opt.exp += '.uni-directional'
# fill time into the name
if opt.pred_path.find('%s') > 0:
opt.pred_path = opt.pred_path % (opt.exp, opt.timemark)
if not os.path.exists(opt.pred_path):
os.makedirs(opt.pred_path)
if not opt.one2many and opt.one2many_mode > 0:
raise ValueError("You cannot choose one2many mode without the -one2many options.")
if opt.one2many and opt.one2many_mode == 0:
raise ValueError("If you choose one2many, you must specify the one2many mode.")
#if opt.greedy and not opt.one2many:
# raise ValueError("Greedy sampling can only be used in one2many mode.")
return opt
示例13: main
# 需要導入模塊: import predict [as 別名]
# 或者: from predict import predict [as 別名]
def main():
# Getting model:
model_file = open('Data/Model/model.json', 'r')
model = model_file.read()
model_file.close()
model = model_from_json(model)
# Getting weights
model.load_weights("Data/Model/weights.h5")
print('Press "ESC" button for exit.')
# Get image from camera, get predict and say it with another process, repeat.
cap = cv2.VideoCapture(0)
old_char = ''
while 1:
ret, img = cap.read()
# Cropping image:
img_height, img_width = img.shape[:2]
side_width = int((img_width-img_height)/2)
img = img[0:img_height, side_width:side_width+img_height]
# Show window:
cv2.imshow('VSL', cv2.flip(img,1)) # cv2.flip(img,1) : Flip(mirror effect) for easy handling.
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = imresize(img, (img_size, img_size, channel_size))
img = 1-np.array(img).astype('float32')/255.
img = img.reshape(1, img_size, img_size, channel_size)
Y_string, Y_possibility = predict(model, img)
if Y_possibility < 0.4: # For secondary vocalization
old_char = ''
if(platform.system() == 'Darwin') and old_char != Y_string and Y_possibility > 0.6:
print(Y_string, Y_possibility)
arg = 'say {0}'.format(Y_string)
# Say predict with multiprocessing
Process(target=os.system, args=(arg,)).start()
old_char = Y_string
if cv2.waitKey(200) == 27: # Decimal 27 = Esc
break
cap.release()
cv2.destroyAllWindows()