本文整理匯總了Python中pointnet_util.pointnet_fp_module方法的典型用法代碼示例。如果您正苦於以下問題:Python pointnet_util.pointnet_fp_module方法的具體用法?Python pointnet_util.pointnet_fp_module怎麽用?Python pointnet_util.pointnet_fp_module使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pointnet_util
的用法示例。
在下文中一共展示了pointnet_util.pointnet_fp_module方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: pn2_fea_extractor
# 需要導入模塊: import pointnet_util [as 別名]
# 或者: from pointnet_util import pointnet_fp_module [as 別名]
def pn2_fea_extractor(xyz, points, scope, is_training, bn_decay=None):
''' Encode multiple context.
Input:
xyz: (batch_size, ndataset, 3) TF tensor
points: (batch_size, ndataset, channel) TF tensor
Return:
new_points: (batch_size, ndataset, channel_out) TF tensor
'''
with tf.variable_scope(scope) as sc:
batch_size = xyz.get_shape()[0].value
num_point = xyz.get_shape()[1].value
l0_xyz = xyz
l0_points = points
# Layer 1
l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points, npoint=2048, radius=0.2, nsample=32, mlp=[32,32,64], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer1')
l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=512, radius=0.4, nsample=32, mlp=[64,64,128], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer2')
l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=128, radius=0.8, nsample=32, mlp=[128,128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer3')
# Feature Propagation layers
l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256,128], is_training, bn_decay, scope='fa_layer1')
l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [128,64], is_training, bn_decay, scope='fa_layer2')
new_points = pointnet_fp_module(l0_xyz, l1_xyz, l0_points, l1_points, [64,64,64], is_training, bn_decay, scope='fa_layer3')
return new_points
示例2: get_model
# 需要導入模塊: import pointnet_util [as 別名]
# 或者: from pointnet_util import pointnet_fp_module [as 別名]
def get_model(point_cloud, is_training, bn_decay=None):
""" Part segmentation PointNet, input is BxNx6 (XYZ NormalX NormalY NormalZ), output Bx50 """
batch_size = point_cloud.get_shape()[0].value
num_point = point_cloud.get_shape()[1].value
end_points = {}
l0_xyz = tf.slice(point_cloud, [0,0,0], [-1,-1,3])
l0_points = tf.slice(point_cloud, [0,0,3], [-1,-1,3])
# Set Abstraction layers
l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points, npoint=512, radius=0.2, nsample=64, mlp=[64,64,128], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer1')
l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=128, radius=0.4, nsample=64, mlp=[128,128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer2')
l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=None, radius=None, nsample=None, mlp=[256,512,1024], mlp2=None, group_all=True, is_training=is_training, bn_decay=bn_decay, scope='layer3')
# Feature Propagation layers
l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256,256], is_training, bn_decay, scope='fa_layer1')
l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256,128], is_training, bn_decay, scope='fa_layer2')
l0_points = pointnet_fp_module(l0_xyz, l1_xyz, tf.concat([l0_xyz,l0_points],axis=-1), l1_points, [128,128,128], is_training, bn_decay, scope='fa_layer3')
# FC layers
net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay)
end_points['feats'] = net
net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp1')
net = tf_util.conv1d(net, 50, 1, padding='VALID', activation_fn=None, scope='fc2')
return net, end_points
示例3: eva_seg
# 需要導入模塊: import pointnet_util [as 別名]
# 或者: from pointnet_util import pointnet_fp_module [as 別名]
def eva_seg(pcpair, pred_flow, nfea=64, ntransfea=12, nsmp1=256, nsmp2=128, nmask=10):
#####################################################
# Evaluate the motion segmentation from a point cloud
# equipped with a deformation flow.
# input
# pcpair: (B x N x 6)
# output
# pred_trans: (B x N x ntransfea)
# pred_grouping: (B x N x N)
# pred_seg: (B x nmask x N)
# pred_conf: (B x nmask x 1)
#####################################################
num_point = pcpair.get_shape()[1].value
xyz, xyz2 = tf.split(pcpair, [3, 3], axis=2)
pred_trans = trans_pred_net(xyz, pred_flow, 'TransNet', False, tf.constant(False), None, nfea=ntransfea)
pred_grouping_sub, fpsidx = grouping_pred_net(xyz, pred_flow, pred_trans, 'GroupingNet', False, tf.constant(False), None, nsmp=nsmp2)
pred_seg_sub, pred_conf = seg_pred_net(xyz, pred_grouping_sub, fpsidx, 'SegNet', False, tf.constant(False), None, nmask=nmask)
pred_conf = tf.nn.sigmoid(pred_conf)
xyz_sub = tf.reshape(tf.gather_nd(xyz, fpsidx), [-1, nsmp2, 3])
#### up sample
pred_grouping = interp_grouping(xyz, pred_grouping_sub, fpsidx, nsmp2, 'InterpNet', False)
pred_seg = tf.transpose(pred_seg_sub, perm=[0,2,1]) # B x nsmp x nmask
pred_seg = pointnet_fp_module(xyz, xyz_sub, None, pred_seg, [], tf.constant(True), None, scope='interp_layer_seg')
pred_seg = tf.transpose(pred_seg, perm=[0,2,1]) # B x nmask x npoint
return pred_trans, pred_grouping, pred_seg, pred_conf
示例4: get_model
# 需要導入模塊: import pointnet_util [as 別名]
# 或者: from pointnet_util import pointnet_fp_module [as 別名]
def get_model(point_cloud, is_training, num_class, bn_decay=None):
""" Semantic segmentation PointNet, input is BxNx3, output Bxnum_class """
batch_size = point_cloud.get_shape()[0].value
num_point = point_cloud.get_shape()[1].value
end_points = {}
l0_xyz = point_cloud
l0_points = None
end_points['l0_xyz'] = l0_xyz
# Layer 1
l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points, npoint=1024, radius=0.1, nsample=32, mlp=[32,32,64], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer1')
l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=256, radius=0.2, nsample=32, mlp=[64,64,128], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer2')
l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=64, radius=0.4, nsample=32, mlp=[128,128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer3')
l4_xyz, l4_points, l4_indices = pointnet_sa_module(l3_xyz, l3_points, npoint=16, radius=0.8, nsample=32, mlp=[256,256,512], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer4')
# Feature Propagation layers
l3_points = pointnet_fp_module(l3_xyz, l4_xyz, l3_points, l4_points, [256,256], is_training, bn_decay, scope='fa_layer1')
l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256,256], is_training, bn_decay, scope='fa_layer2')
l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256,128], is_training, bn_decay, scope='fa_layer3')
l0_points = pointnet_fp_module(l0_xyz, l1_xyz, l0_points, l1_points, [128,128,128], is_training, bn_decay, scope='fa_layer4')
# FC layers
net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay)
end_points['feats'] = net
net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp1')
net = tf_util.conv1d(net, num_class, 1, padding='VALID', activation_fn=None, scope='fc2')
return net, end_points
示例5: get_model
# 需要導入模塊: import pointnet_util [as 別名]
# 或者: from pointnet_util import pointnet_fp_module [as 別名]
def get_model(point_cloud, is_training, num_class, bn_decay=None):
""" Semantic segmentation PointNet, input is BxNx4, output Bxnum_class """
batch_size = point_cloud.get_shape()[0].value
num_point = point_cloud.get_shape()[1].value
end_points = {}
l0_xyz = tf.slice(point_cloud, [0,0,0], [-1,-1,3])
l0_points = tf.slice(point_cloud, [0,0,3], [-1,-1,1])
end_points['l0_xyz'] = l0_xyz
# Layer 1
l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points, npoint=1024, radius=0.1, nsample=32, mlp=[32,32,64], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer1')
l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=256, radius=0.2, nsample=32, mlp=[64,64,128], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer2')
l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=64, radius=0.4, nsample=32, mlp=[128,128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer3')
l4_xyz, l4_points, l4_indices = pointnet_sa_module(l3_xyz, l3_points, npoint=16, radius=0.8, nsample=32, mlp=[256,256,512], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer4')
# Feature Propagation layers
l3_points = pointnet_fp_module(l3_xyz, l4_xyz, l3_points, l4_points, [256,256], is_training, bn_decay, scope='fa_layer1')
l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256,256], is_training, bn_decay, scope='fa_layer2')
l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256,128], is_training, bn_decay, scope='fa_layer3')
l0_points = pointnet_fp_module(l0_xyz, l1_xyz, tf.concat([l0_xyz,l0_points],axis=-1), l1_points, [128,128,128], is_training, bn_decay, scope='fa_layer4')
# FC layers
net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay)
end_points['feats'] = net
net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp1')
net = tf_util.conv1d(net, num_class, 1, padding='VALID', activation_fn=None, scope='fc2')
return net, end_points
示例6: get_model
# 需要導入模塊: import pointnet_util [as 別名]
# 或者: from pointnet_util import pointnet_fp_module [as 別名]
def get_model(point_cloud, cls_label, is_training, bn_decay=None):
""" Classification PointNet, input is BxNx3, output Bx40 """
batch_size = point_cloud.get_shape()[0].value
num_point = point_cloud.get_shape()[1].value
end_points = {}
l0_xyz = tf.slice(point_cloud, [0,0,0], [-1,-1,3])
l0_points = tf.slice(point_cloud, [0,0,3], [-1,-1,3])
# Set abstraction layers
l1_xyz, l1_points = pointnet_sa_module_msg(l0_xyz, l0_points, 512, [0.1,0.2,0.4], [32,64,128], [[32,32,64], [64,64,128], [64,96,128]], is_training, bn_decay, scope='layer1')
l2_xyz, l2_points = pointnet_sa_module_msg(l1_xyz, l1_points, 128, [0.4,0.8], [64,128], [[128,128,256],[128,196,256]], is_training, bn_decay, scope='layer2')
l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=None, radius=None, nsample=None, mlp=[256,512,1024], mlp2=None, group_all=True, is_training=is_training, bn_decay=bn_decay, scope='layer3')
# Feature propagation layers
l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256,256], is_training, bn_decay, scope='fa_layer1')
l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256,128], is_training, bn_decay, scope='fa_layer2')
cls_label_one_hot = tf.one_hot(cls_label, depth=NUM_CATEGORIES, on_value=1.0, off_value=0.0)
cls_label_one_hot = tf.reshape(cls_label_one_hot, [batch_size, 1, NUM_CATEGORIES])
cls_label_one_hot = tf.tile(cls_label_one_hot, [1,num_point,1])
l0_points = pointnet_fp_module(l0_xyz, l1_xyz, tf.concat([cls_label_one_hot, l0_xyz, l0_points],axis=-1), l1_points, [128,128], is_training, bn_decay, scope='fp_layer3')
# FC layers
net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay)
end_points['feats'] = net
net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp1')
net = tf_util.conv1d(net, 50, 1, padding='VALID', activation_fn=None, scope='fc2')
return net, end_points
示例7: get_model
# 需要導入模塊: import pointnet_util [as 別名]
# 或者: from pointnet_util import pointnet_fp_module [as 別名]
def get_model(point_cloud, is_training, num_class, bn_decay=None):
""" Semantic segmentation PointNet, input is BxNx5, output Bxnum_class """
batch_size = point_cloud.get_shape()[0].value
num_point = point_cloud.get_shape()[1].value
end_points = {}
l0_xyz = tf.slice(point_cloud, [0,0,0], [-1,-1,3])
l0_points = tf.slice(point_cloud, [0,0,3], [-1,-1,2])
end_points['l0_xyz'] = l0_xyz
# Layer 1
l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points, npoint=1024, radius=0.1, nsample=32, mlp=[32,32,64], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer1')
l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=256, radius=0.2, nsample=32, mlp=[64,64,128], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer2')
l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=64, radius=0.4, nsample=32, mlp=[128,128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer3')
l4_xyz, l4_points, l4_indices = pointnet_sa_module(l3_xyz, l3_points, npoint=16, radius=0.8, nsample=32, mlp=[256,256,512], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer4')
# Feature Propagation layers
l3_points = pointnet_fp_module(l3_xyz, l4_xyz, l3_points, l4_points, [256,256], is_training, bn_decay, scope='fa_layer1')
l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256,256], is_training, bn_decay, scope='fa_layer2')
l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256,128], is_training, bn_decay, scope='fa_layer3')
l0_points = pointnet_fp_module(l0_xyz, l1_xyz, tf.concat([l0_xyz,l0_points],axis=-1), l1_points, [128,128,128], is_training, bn_decay, scope='fa_layer4')
# FC layers
net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay)
end_points['feats'] = net
net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp1')
net = tf_util.conv1d(net, num_class, 1, padding='VALID', activation_fn=None, scope='fc2')
return net, end_points
示例8: get_model
# 需要導入模塊: import pointnet_util [as 別名]
# 或者: from pointnet_util import pointnet_fp_module [as 別名]
def get_model(point_cloud, is_training, bn_decay=None, num_class = NUM_CLASSES):
""" Part segmentation PointNet, input is BxNx3 (XYZ) """
batch_size = point_cloud.get_shape()[0].value
num_point = point_cloud.get_shape()[1].value
end_points = {}
l0_xyz = tf.slice(point_cloud, [0,0,0], [-1,-1,3])
l0_points = None
# Set Abstraction layers
l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points, npoint=512, radius=0.2, nsample=64, mlp=[64,64,128], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer1')
l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=128, radius=0.4, nsample=64, mlp=[128,128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer2')
l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=None, radius=None, nsample=None, mlp=[256,512,1024], mlp2=None, group_all=True, is_training=is_training, bn_decay=bn_decay, scope='layer3')
###########SEGMENTATION BRANCH
# Feature Propagation layers
l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256,256], is_training, bn_decay, scope='fa_layer1')
l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256,128], is_training, bn_decay, scope='fa_layer2')
l0_points = pointnet_fp_module(l0_xyz, l1_xyz, l0_points, l1_points, [128,128,128], is_training, bn_decay, scope='fa_layer3')
# FC layers
net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True, is_training=is_training, scope='seg_fc1', bn_decay=bn_decay)
end_points['feats'] = net
net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='seg_dp1')
seg_pred = tf_util.conv1d(net, num_class, 1, padding='VALID', activation_fn=None, scope='seg_fc2')
return seg_pred
示例9: corrsfea_extractor
# 需要導入模塊: import pointnet_util [as 別名]
# 或者: from pointnet_util import pointnet_fp_module [as 別名]
def corrsfea_extractor(xyz, is_training, bn_decay, scopename, reuse, nfea=64):
############################
# input
# xyz: (B x N x 3)
# output
# corrsfea: (B x N x nfea)
############################
num_point = xyz.get_shape()[1].value
l0_xyz = xyz
l0_points = l0_xyz
with tf.variable_scope(scopename) as myscope:
if reuse:
myscope.reuse_variables()
# Set Abstraction layers
l1_xyz, l1_points, l1_indices = pointnet_sa_module_msg(l0_xyz, l0_points, 256, [0.1,0.2], [64,64], [[64,64],[64,64],[64,128]], is_training, bn_decay, scope='corrs_layer1')
l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=128, radius=0.4, nsample=64, mlp=[128,128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='corrs_layer2')
l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=None, radius=None, nsample=None, mlp=[256,512,1024], mlp2=None, group_all=True, use_xyz=False, is_training=is_training, bn_decay=bn_decay, scope='corrs_layer3')
# Feature Propagation layers
l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256,256], is_training, bn_decay, scope='corrs_fa_layer1')
l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256,128], is_training, bn_decay, scope='corrs_fa_layer2')
l0_points = pointnet_fp_module(l0_xyz, l1_xyz, l0_points, l1_points, [128,128,64], is_training, bn_decay, scope='corrs_fa_layer3')
# FC layers
net = tf_util.conv1d(l0_points, 64, 1, padding='VALID', bn=True, is_training=is_training, scope='corrs_fc1', bn_decay=bn_decay)
net = tf_util.conv1d(net, nfea, 1, padding='VALID', activation_fn=None, scope='corrs_fc2')
corrsfea = tf.reshape(net, [-1, num_point, nfea])
return corrsfea
示例10: trans_pred_net
# 需要導入模塊: import pointnet_util [as 別名]
# 或者: from pointnet_util import pointnet_fp_module [as 別名]
def trans_pred_net(xyz, flow, scopename, reuse, is_training, bn_decay=None, nfea=12):
#########################
# input
# xyz: (B x N x 3)
# flow: (B x N x 3)
# output
# pred_trans: (B x N x nfea)
#########################
num_point = xyz.get_shape()[1].value
with tf.variable_scope(scopename) as myscope:
if reuse:
myscope.reuse_variables()
l0_xyz = xyz
l0_points = flow
# Set Abstraction layers
l1_xyz, l1_points, l1_indices = pointnet_sa_module_msg(l0_xyz, l0_points, 256, [0.1,0.2], [64,64], [[64,64],[64,64],[64,128]], is_training, bn_decay, scope='trans_layer1', centralize_points=True)
l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=128, radius=0.4, nsample=64, mlp=[128,128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='trans_layer2')
l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=None, radius=None, nsample=None, mlp=[256,512,1024], mlp2=None, group_all=True, use_xyz=True, is_training=is_training, bn_decay=bn_decay, scope='trans_layer3')
# Feature Propagation layers
l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256,256], is_training, bn_decay, scope='trans_fa_layer1')
l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256,128], is_training, bn_decay, scope='trans_fa_layer2')
l0_points = pointnet_fp_module(l0_xyz, l1_xyz, l0_points, l1_points, [128,128,64], is_training, bn_decay, scope='trans_fa_layer3')
# FC layers
net = tf_util.conv1d(l0_points, 64, 1, padding='VALID', bn=True, is_training=is_training, scope='trans_fc1', bn_decay=bn_decay)
net = tf_util.conv1d(net, nfea, 1, padding='VALID', activation_fn=None, scope='trans_fc2')
pred_trans = tf.reshape(net, [-1, num_point, nfea])
return pred_trans
示例11: interp_grouping
# 需要導入模塊: import pointnet_util [as 別名]
# 或者: from pointnet_util import pointnet_fp_module [as 別名]
def interp_grouping(xyz, pred_grouping, fpsidx, nsmp, scopename, reuse):
""" xyz: B x N x 3,
pred_grouping: B x nsmp x nsmp,
fpsidx: B x nsmp """
num_point = xyz.get_shape()[1].value
with tf.variable_scope(scopename) as myscope:
if reuse:
myscope.reuse_variables()
xyz_sub = tf.reshape(tf.gather_nd(xyz, fpsidx), [-1, nsmp, 3])
# row interp
xyz_aug1 = tf.tile(tf.expand_dims(xyz, 1),(1,nsmp,1,1))
xyz_aug1 = tf.reshape(xyz_aug1,(-1, num_point, 3))
xyz_sub_aug1 = tf.tile(tf.expand_dims(xyz_sub,1),(1,nsmp,1,1))
xyz_sub_aug1 = tf.reshape(xyz_sub_aug1,(-1, nsmp, 3))
U_combined = tf.reshape(pred_grouping, (-1, nsmp, 1))
U_combined = pointnet_fp_module(xyz_aug1, xyz_sub_aug1, None, U_combined, [], tf.constant(True), None, scope='interp_layer_row')
U_combined = tf.reshape(U_combined,(-1, nsmp, num_point, 1))
U_combined = tf.transpose(U_combined, perm=(0,2,1,3))
U_combined = tf.reshape(U_combined, (-1, nsmp, 1)) # B*npoint x nsmp x 1
# column interp
xyz_aug2 = tf.tile(tf.expand_dims(xyz, 1),(1,num_point,1,1))
xyz_aug2 = tf.reshape(xyz_aug2,(-1, num_point, 3))
xyz_sub_aug2 = tf.tile(tf.expand_dims(xyz_sub,1),(1,num_point,1,1))
xyz_sub_aug2 = tf.reshape(xyz_sub_aug2,(-1, nsmp, 3))
U_combined = pointnet_fp_module(xyz_aug2, xyz_sub_aug2, None, U_combined, [], tf.constant(True), None, scope='interp_layer_column')
U_combined = tf.reshape(U_combined,(-1, num_point, num_point))
U_combined = tf.transpose(U_combined, perm=(0,2,1))
return U_combined
示例12: build_pointnet2_seg
# 需要導入模塊: import pointnet_util [as 別名]
# 或者: from pointnet_util import pointnet_fp_module [as 別名]
def build_pointnet2_seg(X, out_dim, is_training, bn_decay, scope):
n_points = X.get_shape()[1].value
l0_xyz = tf.slice(X, [0,0,0], [-1,-1,3])
l0_points = tf.slice(X, [0,0,3], [-1,-1,0])
# Set Abstraction layers
l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points,
npoint=512, radius=0.2, nsample=64, mlp=[64,64,128],
mlp2=None, group_all=False, is_training=is_training,
bn_decay=bn_decay, scope='layer1')
l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points,
npoint=128, radius=0.4, nsample=64, mlp=[128,128,256],
mlp2=None, group_all=False, is_training=is_training,
bn_decay=bn_decay, scope='layer2')
l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points,
npoint=None, radius=None, nsample=None, mlp=[256,512,1024],
mlp2=None, group_all=True, is_training=is_training,
bn_decay=bn_decay, scope='layer3')
# Feature Propagation layers
l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points,
[256,256], is_training, bn_decay, scope='fa_layer1')
l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points,
[256,128], is_training, bn_decay, scope='fa_layer2')
l0_points = pointnet_fp_module(l0_xyz, l1_xyz,
tf.concat([l0_xyz,l0_points],axis=-1), l1_points, [128,128,128],
is_training, bn_decay, scope='fa_layer3')
# FC layers
net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True,
is_training=is_training, scope='fc1', bn_decay=bn_decay)
net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training,
scope='dp1')
net = tf_util.conv1d(net, out_dim, 1, padding='VALID', activation_fn=None,
scope='fc2')
return net, 0
示例13: get_model
# 需要導入模塊: import pointnet_util [as 別名]
# 或者: from pointnet_util import pointnet_fp_module [as 別名]
def get_model(point_cloud, is_training, num_class, bn_decay=None):
""" Semantic segmentation PointNet, input is BxNx3, output Bxnum_class """
batch_size = point_cloud.get_shape()[0].value
num_point = point_cloud.get_shape()[1].value
end_points = {}
l0_xyz = point_cloud[:, :, :3]
l0_points = point_cloud[:, :, 3:]
end_points['l0_xyz'] = l0_xyz
# Layer 1
l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points, npoint=1024, radius=0.1, nsample=32, mlp=[32,32,64], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer1')
l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=256, radius=0.2, nsample=32, mlp=[64,64,128], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer2')
l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=64, radius=0.4, nsample=32, mlp=[128,128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer3')
l4_xyz, l4_points, l4_indices = pointnet_sa_module(l3_xyz, l3_points, npoint=16, radius=0.8, nsample=32, mlp=[256,256,512], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer4')
# Feature Propagation layers
l3_points_sem = pointnet_fp_module(l3_xyz, l4_xyz, l3_points, l4_points, [256,256], is_training, bn_decay, scope='sem_fa_layer1')
l2_points_sem = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points_sem, [256,256], is_training, bn_decay, scope='sem_fa_layer2')
l1_points_sem = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points_sem, [256,128], is_training, bn_decay, scope='sem_fa_layer3')
l0_points_sem = pointnet_fp_module(l0_xyz, l1_xyz, l0_points, l1_points_sem, [128,128,128], is_training, bn_decay, scope='sem_fa_layer4')
# FC layers
net_sem = tf_util.conv1d(l0_points_sem, 128, 1, padding='VALID', bn=True, is_training=is_training, scope='sem_fc1', bn_decay=bn_decay)
net_sem_cache = tf_util.conv1d(net_sem, 128, 1, padding='VALID', bn=True, is_training=is_training, scope='sem_cache', bn_decay=bn_decay)
# ins
l3_points_ins = pointnet_fp_module(l3_xyz, l4_xyz, l3_points, l4_points, [256,256], is_training, bn_decay, scope='ins_fa_layer1')
l2_points_ins = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points_ins, [256,256], is_training, bn_decay, scope='ins_fa_layer2')
l1_points_ins = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points_ins, [256,128], is_training, bn_decay, scope='ins_fa_layer3')
l0_points_ins = pointnet_fp_module(l0_xyz, l1_xyz, l0_points, l1_points_ins, [128,128,128], is_training, bn_decay, scope='ins_fa_layer4')
net_ins = tf_util.conv1d(l0_points_ins, 128, 1, padding='VALID', bn=True, is_training=is_training, scope='ins_fc1', bn_decay=bn_decay)
net_ins = net_ins + net_sem_cache
net_ins = tf_util.dropout(net_ins, keep_prob=0.5, is_training=is_training, scope='ins_dp1')
net_ins = tf_util.conv1d(net_ins, 5, 1, padding='VALID', activation_fn=None, scope='ins_fc4')
k = 30
adj_matrix = tf_util.pairwise_distance_l1(net_ins)
nn_idx = tf_util.knn_thres(adj_matrix, k=k)
nn_idx = tf.stop_gradient(nn_idx)
net_sem = tf_util.get_local_feature(net_sem, nn_idx=nn_idx, k=k)# [b, n, k, c]
net_sem = tf.reduce_max(net_sem, axis=-2, keep_dims=False)
net_sem = tf_util.dropout(net_sem, keep_prob=0.5, is_training=is_training, scope='sem_dp1')
net_sem = tf_util.conv1d(net_sem, num_class, 1, padding='VALID', activation_fn=None, scope='sem_fc4')
return net_sem, net_ins
示例14: build_pointnet2_seg
# 需要導入模塊: import pointnet_util [as 別名]
# 或者: from pointnet_util import pointnet_fp_module [as 別名]
def build_pointnet2_seg(scope, X, out_dims, is_training, bn_decay):
with tf.variable_scope(scope):
l0_xyz = tf.slice(X, [0,0,0], [-1,-1,3])
l0_points = tf.slice(X, [0,0,3], [-1,-1,0])
# Set Abstraction layers
l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points,
npoint=512, radius=0.2, nsample=64, mlp=[64,64,128],
mlp2=None, group_all=False, is_training=is_training,
bn_decay=bn_decay, scope='layer1')
l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points,
npoint=128, radius=0.4, nsample=64, mlp=[128,128,256],
mlp2=None, group_all=False, is_training=is_training,
bn_decay=bn_decay, scope='layer2')
l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points,
npoint=None, radius=None, nsample=None, mlp=[256,512,1024],
mlp2=None, group_all=True, is_training=is_training,
bn_decay=bn_decay, scope='layer3')
# Feature Propagation layers
l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points,
[256,256], is_training, bn_decay, scope='fa_layer1')
l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points,
[256,128], is_training, bn_decay, scope='fa_layer2')
l0_points = pointnet_fp_module(l0_xyz, l1_xyz,
tf.concat([l0_xyz,l0_points],axis=-1), l1_points, [128,128,128],
is_training, bn_decay, scope='fa_layer3')
# FC layers
net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True,
is_training=is_training, scope='fc1', bn_decay=bn_decay)
net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training,
scope='dp1')
results = []
for idx, out_dim in enumerate(out_dims):
current_result = tf_util.conv1d(net, out_dim, 1, padding='VALID', activation_fn=None, scope='fc2_{}'.format(idx))
results.append(current_result)
return results
示例15: get_instance_seg_v2_net
# 需要導入模塊: import pointnet_util [as 別名]
# 或者: from pointnet_util import pointnet_fp_module [as 別名]
def get_instance_seg_v2_net(point_cloud, one_hot_vec,
is_training, bn_decay, end_points):
''' 3D instance segmentation PointNet v2 network.
Input:
point_cloud: TF tensor in shape (B,N,4)
frustum point clouds with XYZ and intensity in point channels
XYZs are in frustum coordinate
one_hot_vec: TF tensor in shape (B,3)
length-3 vectors indicating predicted object type
is_training: TF boolean scalar
bn_decay: TF float scalar
end_points: dict
Output:
logits: TF tensor in shape (B,N,2), scores for bkg/clutter and object
end_points: dict
'''
l0_xyz = tf.slice(point_cloud, [0,0,0], [-1,-1,3])
l0_points = tf.slice(point_cloud, [0,0,3], [-1,-1,1])
# Set abstraction layers
l1_xyz, l1_points = pointnet_sa_module_msg(l0_xyz, l0_points,
128, [0.2,0.4,0.8], [32,64,128],
[[32,32,64], [64,64,128], [64,96,128]],
is_training, bn_decay, scope='layer1')
l2_xyz, l2_points = pointnet_sa_module_msg(l1_xyz, l1_points,
32, [0.4,0.8,1.6], [64,64,128],
[[64,64,128], [128,128,256], [128,128,256]],
is_training, bn_decay, scope='layer2')
l3_xyz, l3_points, _ = pointnet_sa_module(l2_xyz, l2_points,
npoint=None, radius=None, nsample=None, mlp=[128,256,1024],
mlp2=None, group_all=True, is_training=is_training,
bn_decay=bn_decay, scope='layer3')
# Feature Propagation layers
l3_points = tf.concat([l3_points, tf.expand_dims(one_hot_vec, 1)], axis=2)
l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points,
[128,128], is_training, bn_decay, scope='fa_layer1')
l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points,
[128,128], is_training, bn_decay, scope='fa_layer2')
l0_points = pointnet_fp_module(l0_xyz, l1_xyz,
tf.concat([l0_xyz,l0_points],axis=-1), l1_points,
[128,128], is_training, bn_decay, scope='fa_layer3')
# FC layers
net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True,
is_training=is_training, scope='conv1d-fc1', bn_decay=bn_decay)
end_points['feats'] = net
net = tf_util.dropout(net, keep_prob=0.7,
is_training=is_training, scope='dp1')
logits = tf_util.conv1d(net, 2, 1,
padding='VALID', activation_fn=None, scope='conv1d-fc2')
return logits, end_points