本文整理匯總了Python中plotly.plotly.plot方法的典型用法代碼示例。如果您正苦於以下問題:Python plotly.plot方法的具體用法?Python plotly.plot怎麽用?Python plotly.plot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類plotly.plotly
的用法示例。
在下文中一共展示了plotly.plot方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: running_times
# 需要導入模塊: from plotly import plotly [as 別名]
# 或者: from plotly.plotly import plot [as 別名]
def running_times():
rospack = rospkg.RosPack()
data_path = os.path.join(rospack.get_path('vslam_evaluation'), 'out')
df = pd.read_csv(os.path.join(data_path, 'runtimes.txt'),
header=None,
index_col=0)
bars = []
for col_idx in df:
this_stack = df[col_idx].dropna()
bars.append(
go.Bar(
x=this_stack.index,
y=this_stack.values,
name='Thread {}'.format(col_idx)))
layout = go.Layout(
barmode='stack',
yaxis={'title': 'Running time [s]'})
fig = go.Figure(data=bars, layout=layout)
url = py.plot(fig, filename='vslam_eval_run_times')
示例2: run_query
# 需要導入模塊: from plotly import plotly [as 別名]
# 或者: from plotly.plotly import plot [as 別名]
def run_query(ont, aset, args):
"""
Basic querying by positive/negative class lists
"""
subjects = aset.query(args.query, args.negative)
for s in subjects:
print("{} {}".format(s, str(aset.label(s))))
if args.plot:
import plotly.plotly as py
import plotly.graph_objs as go
tups = aset.query_associations(subjects=subjects)
z, xaxis, yaxis = tuple_to_matrix(tups)
spacechar = " "
xaxis = mk_axis(xaxis, aset, args, spacechar=" ")
yaxis = mk_axis(yaxis, aset, args, spacechar=" ")
logging.info("PLOTTING: {} x {} = {}".format(xaxis, yaxis, z))
trace = go.Heatmap(z=z,
x=xaxis,
y=yaxis)
data=[trace]
py.plot(data, filename='labelled-heatmap')
示例3: run_query_associations
# 需要導入模塊: from plotly import plotly [as 別名]
# 或者: from plotly.plotly import plot [as 別名]
def run_query_associations(ont, aset, args):
if args.dendrogram:
plot_subject_term_matrix(ont, aset, args)
return
import plotly.plotly as py
import plotly.graph_objs as go
tups = aset.query_associations(subjects=args.subjects)
for (s,c) in tups:
print("{} {}".format(s, c))
z, xaxis, yaxis = tuple_to_matrix(tups)
xaxis = mk_axis(xaxis, aset, args)
yaxis = mk_axis(yaxis, aset, args)
logging.info("PLOTTING: {} x {} = {}".format(xaxis, yaxis, z))
trace = go.Heatmap(z=z,
x=xaxis,
y=yaxis)
data=[trace]
py.plot(data, filename='labelled-heatmap')
#plot_dendrogram(z, xaxis, yaxis)
# TODO: fix this really dumb implementation
示例4: __init__
# 需要導入模塊: from plotly import plotly [as 別名]
# 或者: from plotly.plotly import plot [as 別名]
def __init__(self,
apiKey=None,
username=None,
experimentName="experiment"):
# Instantiate API credentials.
try:
self.apiKey = apiKey if apiKey else os.environ["PLOTLY_API_KEY"]
except:
print ("Missing PLOTLY_API_KEY environment variable. If you have a "
"key, set it with $ export PLOTLY_API_KEY=api_key\n"
"You can retrieve a key by registering for the Plotly API at "
"http://www.plot.ly")
raise OSError("Missing API key.")
try:
self.username = username if username else os.environ["PLOTLY_USERNAME"]
except:
print ("Missing PLOTLY_USERNAME environment variable. If you have a "
"username, set it with $ export PLOTLY_USERNAME=username\n"
"You can sign up for the Plotly API at http://www.plot.ly")
raise OSError("Missing username.")
py.sign_in(self.username, self.apiKey)
self.experimentName = experimentName
示例5: graph_OHLC
# 需要導入模塊: from plotly import plotly [as 別名]
# 或者: from plotly.plotly import plot [as 別名]
def graph_OHLC(self):
#not quite there, but the other one works, which is what i really care about
OHLC_trace = go.Ohlc(x=self.OHLC_data.Date_Time,
open=self.OHLC_data.Open,
high=self.OHLC_data.High,
low=self.OHLC_data.Low,
close=self.OHLC_data.Close,
name="OHLC Data",
increasing=dict(line=dict(color= '#408e4a')),
decreasing=dict(line=dict(color= '#cc2718')))
swing_data = pd.read_csv(self.swing_file, names=['Date_Time', 'Price', 'Direction', 'Row'], parse_dates=True)
swing_trace = go.Scatter(
x = swing_data.Date_Time,
y = swing_data.Price,
mode = 'lines+markers',
name = 'Swings',
line = dict(
color = ('rgb(111, 126, 130)'),
width = 3)
)
data = [OHLC_trace, swing_trace]
layout = go.Layout(xaxis = dict(rangeslider = dict(visible = False)), title= self.data_file[:-4])
fig = go.Figure(data=data, layout=layout)
py.plot(fig, filename=self.data_file + ".html", output_type='file')
示例6: export_OHLC_graph
# 需要導入模塊: from plotly import plotly [as 別名]
# 或者: from plotly.plotly import plot [as 別名]
def export_OHLC_graph(self):
if self.update:
print("Did update, graph is screwy")
OHLC_trace = go.Ohlc(x=self.OHLC_data.Date_Time,
open=self.OHLC_data.Open,
high=self.OHLC_data.High,
low=self.OHLC_data.Low,
close=self.OHLC_data.Close,
name="OHLC Data",
increasing=dict(line=dict(color= '#408e4a')),
decreasing=dict(line=dict(color= '#cc2718')))
swing_data = pd.read_csv(self.swing_file, names=['Date_Time', 'Price', 'Direction', 'Row'], parse_dates=True)
swing_trace = go.Scatter(
x = swing_data.Date_Time,
y = swing_data.Price,
mode = 'lines+markers',
name = 'Swings',
line = dict(
color = ('rgb(111, 126, 130)'),
width = 3)
)
data = [OHLC_trace, swing_trace]
layout = {
'title': self.data_file[:-4],
'yaxis': {'title': 'Price'},
}
fig = go.Figure(data=data, layout=layout)
offline.plot(fig, output_type='file',filename=self.data_file + ".html", image='png', image_filename=self.data_file)
示例7: position_comparison
# 需要導入模塊: from plotly import plotly [as 別名]
# 或者: from plotly.plotly import plot [as 別名]
def position_comparison():
plot_layout = go.Layout(
title='X position comparison',
xaxis={'title': 'Time [s]'},
yaxis={'title': 'X position [m]'}
)
plot_data = []
for i, (label, bag_file_name, odometry_topic_name) in enumerate(comparisons):
td_visual, td_vicon = load_one_comparison(bag_file_name, odometry_topic_name)
plot_data.append(
go.Scatter(x=td_visual.col(0)[::4],
y=td_visual.col(1)[::4],
mode='lines+markers',
name=label,
marker={'maxdisplayed': 150}))
if i == 0:
# Only plot ground truth once
plot_data.append(
go.Scatter(x=td_vicon.col(0)[::20],
y=td_vicon.col(1)[::20],
mode='lines+markers',
name='Truth',
marker={'maxdisplayed': 150}))
fig = go.Figure(data=plot_data, layout=plot_layout)
url = py.plot(fig, filename='vslam_eval_x_pos')
示例8: plot_intersections
# 需要導入模塊: from plotly import plotly [as 別名]
# 或者: from plotly.plotly import plot [as 別名]
def plot_intersections(ont, aset, args):
import plotly.plotly as py
import plotly.graph_objs as go
(z, xaxis, yaxis) = create_intersection_matrix(ont, aset, args)
trace = go.Heatmap(z=z,
x=xaxis,
y=yaxis)
data=[trace]
py.plot(data, filename='labelled-heatmap')
示例9: _plot_option_logic
# 需要導入模塊: from plotly import plotly [as 別名]
# 或者: from plotly.plotly import plot [as 別名]
def _plot_option_logic(plot_options_from_call_signature):
"""
Given some plot_options as part of a plot call, decide on final options.
Precedence:
1 - Start with DEFAULT_PLOT_OPTIONS
2 - Update each key with ~/.plotly/.config options (tls.get_config)
3 - Update each key with session plot options (set by py.sign_in)
4 - Update each key with plot, iplot call signature options
"""
default_plot_options = copy.deepcopy(DEFAULT_PLOT_OPTIONS)
file_options = tools.get_config_file()
session_options = get_session_plot_options()
plot_options_from_call_signature = copy.deepcopy(plot_options_from_call_signature)
# Validate options and fill in defaults w world_readable and sharing
for option_set in [plot_options_from_call_signature,
session_options, file_options]:
utils.validate_world_readable_and_sharing_settings(option_set)
utils.set_sharing_and_world_readable(option_set)
# dynamic defaults
if ('filename' in option_set and
'fileopt' not in option_set):
option_set['fileopt'] = 'overwrite'
user_plot_options = {}
user_plot_options.update(default_plot_options)
user_plot_options.update(file_options)
user_plot_options.update(session_options)
user_plot_options.update(plot_options_from_call_signature)
user_plot_options = {k: v for k, v in user_plot_options.items()
if k in default_plot_options}
return user_plot_options
示例10: plot_mpl
# 需要導入模塊: from plotly import plotly [as 別名]
# 或者: from plotly.plotly import plot [as 別名]
def plot_mpl(fig, resize=True, strip_style=False, update=None, **plot_options):
"""Replot a matplotlib figure with plotly.
This function:
1. converts the mpl figure into JSON (run help(plolty.tools.mpl_to_plotly))
2. makes a request to Plotly to save this figure in your account
3. opens your figure in a browser tab OR returns the unique figure url
Positional agruments:
fig -- a figure object from matplotlib
Keyword arguments:
resize (default=True) -- allow plotly to choose the figure size
strip_style (default=False) -- allow plotly to choose style options
update (default=None) -- update the resulting figure with an 'update'
dictionary-like object resembling a plotly 'Figure' object
Additional keyword arguments:
plot_options -- run help(plotly.plotly.plot)
"""
fig = tools.mpl_to_plotly(fig, resize=resize, strip_style=strip_style)
if update and isinstance(update, dict):
fig.update(update)
fig.validate()
elif update is not None:
raise exceptions.PlotlyGraphObjectError(
"'update' must be dictionary-like and a valid plotly Figure "
"object. Run 'help(plotly.graph_objs.Figure)' for more info."
)
return plot(fig, **plot_options)
示例11: __init__
# 需要導入模塊: from plotly import plotly [as 別名]
# 或者: from plotly.plotly import plot [as 別名]
def __init__(self, stream_id):
"""
Initialize a Stream object with your unique stream_id.
Find your stream_id at {plotly_domain}/settings.
For more help, see: `help(plotly.plotly.Stream)`
or see examples and tutorials here:
https://plot.ly/python/streaming/
"""
self.stream_id = stream_id
self.connected = False
self._stream = None
示例12: open
# 需要導入模塊: from plotly import plotly [as 別名]
# 或者: from plotly.plotly import plot [as 別名]
def open(self):
"""
Open streaming connection to plotly.
For more help, see: `help(plotly.plotly.Stream)`
or see examples and tutorials here:
https://plot.ly/python/streaming/
"""
streaming_specs = self.get_streaming_specs()
self._stream = chunked_requests.Stream(**streaming_specs)
示例13: ishow
# 需要導入模塊: from plotly import plotly [as 別名]
# 或者: from plotly.plotly import plot [as 別名]
def ishow(cls, figure_or_data, format='png', width=None, height=None,
scale=None):
"""Display a static image of the plot described by `figure_or_data`
in an IPython Notebook.
positional arguments:
- figure_or_data: The figure dict-like or data list-like object that
describes a plotly figure.
Same argument used in `py.plot`, `py.iplot`,
see https://plot.ly/python for examples
- format: 'png', 'svg', 'jpeg', 'pdf'
- width: output width
- height: output height
- scale: Increase the resolution of the image by `scale` amount
Only valid for PNG and JPEG images.
example:
```
import plotly.plotly as py
fig = {'data': [{'x': [1, 2, 3], 'y': [3, 1, 5], 'type': 'bar'}]}
py.image.ishow(fig, 'png', scale=3)
"""
if format == 'pdf':
raise exceptions.PlotlyError(
"Aw, snap! "
"It's not currently possible to embed a pdf into "
"an IPython notebook. You can save the pdf "
"with the `image.save_as` or you can "
"embed an png, jpeg, or svg.")
img = cls.get(figure_or_data, format, width, height, scale)
from IPython.display import display, Image, SVG
if format == 'svg':
display(SVG(img))
else:
display(Image(img))
示例14: delete
# 需要導入模塊: from plotly import plotly [as 別名]
# 或者: from plotly.plotly import plot [as 別名]
def delete(cls, grid=None, grid_url=None):
"""
Delete a grid from your Plotly account.
Only one of `grid` or `grid_url` needs to be specified.
`grid` is a plotly.grid_objs.Grid object that has already
been uploaded to Plotly.
`grid_url` is the URL of the Plotly grid to delete
Usage example 1: Upload a grid to plotly, then delete it
```
from plotly.grid_objs import Grid, Column
import plotly.plotly as py
column_1 = Column([1, 2, 3], 'time')
column_2 = Column([4, 2, 5], 'voltage')
grid = Grid([column_1, column_2])
py.grid_ops.upload(grid, 'time vs voltage')
# now delete it, and free up that filename
py.grid_ops.delete(grid)
```
Usage example 2: Delete a plotly grid by url
```
import plotly.plotly as py
grid_url = 'https://plot.ly/~chris/3'
py.grid_ops.delete(grid_url=grid_url)
```
"""
grid_id = _api_v2.parse_grid_id_args(grid, grid_url)
api_url = _api_v2.api_url('grids') + '/' + grid_id
res = requests.delete(api_url, headers=_api_v2.headers(),
verify=get_config()['plotly_ssl_verification'])
_api_v2.response_handler(res)
示例15: parse_grid_id_args
# 需要導入模塊: from plotly import plotly [as 別名]
# 或者: from plotly.plotly import plot [as 別名]
def parse_grid_id_args(cls, grid, grid_url):
"""
Return the grid_id from the non-None input argument.
Raise an error if more than one argument was supplied.
"""
if grid is not None:
id_from_grid = grid.id
else:
id_from_grid = None
args = [id_from_grid, grid_url]
arg_names = ('grid', 'grid_url')
supplied_arg_names = [arg_name for arg_name, arg
in zip(arg_names, args) if arg is not None]
if not supplied_arg_names:
raise exceptions.InputError(
"One of the two keyword arguments is required:\n"
" `grid` or `grid_url`\n\n"
"grid: a plotly.graph_objs.Grid object that has already\n"
" been uploaded to Plotly.\n\n"
"grid_url: the url where the grid can be accessed on\n"
" Plotly, e.g. 'https://plot.ly/~chris/3043'\n\n"
)
elif len(supplied_arg_names) > 1:
raise exceptions.InputError(
"Only one of `grid` or `grid_url` is required. \n"
"You supplied both. \n"
)
else:
supplied_arg_name = supplied_arg_names.pop()
if supplied_arg_name == 'grid_url':
path = six.moves.urllib.parse.urlparse(grid_url).path
file_owner, file_id = path.replace("/~", "").split('/')[0:2]
return '{0}:{1}'.format(file_owner, file_id)
else:
return grid.id