本文整理匯總了Python中plotly.plotly.iplot方法的典型用法代碼示例。如果您正苦於以下問題:Python plotly.iplot方法的具體用法?Python plotly.iplot怎麽用?Python plotly.iplot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類plotly.plotly
的用法示例。
在下文中一共展示了plotly.iplot方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: iplot_mpl
# 需要導入模塊: from plotly import plotly [as 別名]
# 或者: from plotly.plotly import iplot [as 別名]
def iplot_mpl(fig, resize=True, strip_style=False, update=None,
**plot_options):
"""Replot a matplotlib figure with plotly in IPython.
This function:
1. converts the mpl figure into JSON (run help(plolty.tools.mpl_to_plotly))
2. makes a request to Plotly to save this figure in your account
3. displays the image in your IPython output cell
Positional agruments:
fig -- a figure object from matplotlib
Keyword arguments:
resize (default=True) -- allow plotly to choose the figure size
strip_style (default=False) -- allow plotly to choose style options
update (default=None) -- update the resulting figure with an 'update'
dictionary-like object resembling a plotly 'Figure' object
Additional keyword arguments:
plot_options -- run help(plotly.plotly.iplot)
"""
fig = tools.mpl_to_plotly(fig, resize=resize, strip_style=strip_style)
if update and isinstance(update, dict):
fig.update(update)
fig.validate()
elif update is not None:
raise exceptions.PlotlyGraphObjectError(
"'update' must be dictionary-like and a valid plotly Figure "
"object. Run 'help(plotly.graph_objs.Figure)' for more info."
)
return iplot(fig, **plot_options)
示例2: _plot_option_logic
# 需要導入模塊: from plotly import plotly [as 別名]
# 或者: from plotly.plotly import iplot [as 別名]
def _plot_option_logic(plot_options_from_call_signature):
"""
Given some plot_options as part of a plot call, decide on final options.
Precedence:
1 - Start with DEFAULT_PLOT_OPTIONS
2 - Update each key with ~/.plotly/.config options (tls.get_config)
3 - Update each key with session plot options (set by py.sign_in)
4 - Update each key with plot, iplot call signature options
"""
default_plot_options = copy.deepcopy(DEFAULT_PLOT_OPTIONS)
file_options = tools.get_config_file()
session_options = get_session_plot_options()
plot_options_from_call_signature = copy.deepcopy(plot_options_from_call_signature)
# Validate options and fill in defaults w world_readable and sharing
for option_set in [plot_options_from_call_signature,
session_options, file_options]:
utils.validate_world_readable_and_sharing_settings(option_set)
utils.set_sharing_and_world_readable(option_set)
# dynamic defaults
if ('filename' in option_set and
'fileopt' not in option_set):
option_set['fileopt'] = 'overwrite'
user_plot_options = {}
user_plot_options.update(default_plot_options)
user_plot_options.update(file_options)
user_plot_options.update(session_options)
user_plot_options.update(plot_options_from_call_signature)
user_plot_options = {k: v for k, v in user_plot_options.items()
if k in default_plot_options}
return user_plot_options
示例3: ishow
# 需要導入模塊: from plotly import plotly [as 別名]
# 或者: from plotly.plotly import iplot [as 別名]
def ishow(cls, figure_or_data, format='png', width=None, height=None,
scale=None):
"""Display a static image of the plot described by `figure_or_data`
in an IPython Notebook.
positional arguments:
- figure_or_data: The figure dict-like or data list-like object that
describes a plotly figure.
Same argument used in `py.plot`, `py.iplot`,
see https://plot.ly/python for examples
- format: 'png', 'svg', 'jpeg', 'pdf'
- width: output width
- height: output height
- scale: Increase the resolution of the image by `scale` amount
Only valid for PNG and JPEG images.
example:
```
import plotly.plotly as py
fig = {'data': [{'x': [1, 2, 3], 'y': [3, 1, 5], 'type': 'bar'}]}
py.image.ishow(fig, 'png', scale=3)
"""
if format == 'pdf':
raise exceptions.PlotlyError(
"Aw, snap! "
"It's not currently possible to embed a pdf into "
"an IPython notebook. You can save the pdf "
"with the `image.save_as` or you can "
"embed an png, jpeg, or svg.")
img = cls.get(figure_or_data, format, width, height, scale)
from IPython.display import display, Image, SVG
if format == 'svg':
display(SVG(img))
else:
display(Image(img))
示例4: setup_metric_streams
# 需要導入模塊: from plotly import plotly [as 別名]
# 或者: from plotly.plotly import iplot [as 別名]
def setup_metric_streams(self, local_stream_ids, metric_name, num_channels):
for i in range(num_channels):
stream_id = local_stream_ids[i]
self.stream_ids.append(stream_id)
py_stream = py.Stream(stream_id)
py_stream.open()
self.py_streams.append(py_stream)
go_stream = go.Stream(token=stream_id, maxpoints=self.max_points)
self.go_streams.append(go_stream)
traces = []
for i in range(num_channels):
channel_name = "channel_%s" % i
go_stream = self.go_streams[i]
trace = go.Scatter(
x=[],
y=[],
mode='splines',
stream=go_stream,
name=channel_name
)
traces.append(trace)
data = go.Data(traces)
layout = go.Layout(title=metric_name)
fig = go.Figure(data=data, layout=layout)
py.iplot(fig, filename=metric_name)
示例5: plot_counters
# 需要導入模塊: from plotly import plotly [as 別名]
# 或者: from plotly.plotly import iplot [as 別名]
def plot_counters():
counters = np.loadtxt('pretrained/counters_all.csv')
for i in range(114):
counters[i, i] = 0.5
hero_dict = get_hero_dict()
x_labels = []
for i in range(114):
if i != 23:
x_labels.append(hero_dict[i + 1])
counters = np.delete(counters, [23], 0)
counters = np.delete(counters, [23], 1)
trace = go.Heatmap(z=counters,
x=x_labels,
y=x_labels,
colorscale='Viridis')
layout = go.Layout(
title='Hero counters (hero1 winrate against hero2)',
width=1000,
height=1000,
xaxis=dict(ticks='',
nticks=114,
title='hero2',
tickfont=dict(
size=8,
color='black')),
yaxis=dict(ticks='',
nticks=114,
title='hero1',
tickfont=dict(
size=8,
color='black'))
)
data = [trace]
fig = go.Figure(data=data, layout=layout)
py.iplot(fig, filename='heatmap_counters')
示例6: _plot_plotly
# 需要導入模塊: from plotly import plotly [as 別名]
# 或者: from plotly.plotly import iplot [as 別名]
def _plot_plotly(subset_sizes, data_list, mmr):
""" Plots learning curve using plotly backend.
Args:
subset_sizes: list of dataset sizes on which the evaluation was done
data_list: list of ROC AUC scores corresponding to subset_sizes
mmr: what MMR the data is taken from
"""
if mmr:
title = 'Learning curve plot for %d MMR' % mmr
else:
title = 'Learning curve plot'
trace0 = go.Scatter(
x=subset_sizes,
y=data_list[0],
name='Cross validation error'
)
trace1 = go.Scatter(
x=subset_sizes,
y=data_list[1],
name='Test error'
)
data = go.Data([trace0, trace1])
layout = go.Layout(
title=title,
xaxis=dict(
title='Dataset size (logspace)',
type='log',
autorange=True,
titlefont=dict(
family='Courier New, monospace',
size=15,
color='#7f7f7f'
)
),
yaxis=dict(
title='Error',
titlefont=dict(
family='Courier New, monospace',
size=15,
color='#7f7f7f'
)
)
)
fig = go.Figure(data=data, layout=layout)
py.iplot(fig, filename='learning_curve_%dMMR' % mmr)
示例7: plot_synergies
# 需要導入模塊: from plotly import plotly [as 別名]
# 或者: from plotly.plotly import iplot [as 別名]
def plot_synergies():
synergies = np.loadtxt('pretrained/synergies_all.csv')
for i in range(114):
synergies[i, i] = 0.5
hero_dict = get_hero_dict()
x_labels = []
for i in range(114):
if i != 23:
x_labels.append(hero_dict[i + 1])
synergies = np.delete(synergies, [23], 0)
synergies = np.delete(synergies, [23], 1)
trace = go.Heatmap(z=synergies,
x=x_labels,
y=x_labels,
colorscale='Viridis')
layout = go.Layout(
title='Hero synergies',
width=1000,
height=1000,
xaxis=dict(ticks='',
nticks=114,
tickfont=dict(
size=8,
color='black')),
yaxis=dict(ticks='',
nticks=114,
tickfont=dict(
size=8,
color='black'))
)
data = [trace]
fig = go.Figure(data=data, layout=layout)
py.iplot(fig, filename='heatmap_synergies')
示例8: winrate_statistics
# 需要導入模塊: from plotly import plotly [as 別名]
# 或者: from plotly.plotly import iplot [as 別名]
def winrate_statistics(dataset_df, mmr_info):
x_data, y_data = dataset_df
wins = np.zeros(114)
games = np.zeros(114)
winrate = np.zeros(114)
for idx, game in enumerate(x_data):
for i in range(228):
if game[i] == 1:
games[i % 114] += 1
if y_data[idx] == 1:
if i < 114:
wins[i] += 1
else:
if i >= 114:
wins[i - 114] += 1
winrate = wins / games
winrate_dict = dict()
hero_dict = get_hero_dict()
for i in range(114):
if i != 23:
winrate_dict[hero_dict[i + 1]] = winrate[i]
sorted_winrates = sorted(winrate_dict.items(), key=operator.itemgetter(1))
x_plot_data = [x[0] for x in sorted_winrates]
y_plot_data = [x[1] for x in sorted_winrates]
title = 'Hero winrates at ' + mmr_info + ' MMR'
data = [go.Bar(
y=x_plot_data,
x=y_plot_data,
orientation='h'
)]
layout = go.Layout(
title=title,
width=1000,
height=1400,
yaxis=dict(title='hero',
ticks='',
nticks=114,
tickfont=dict(
size=8,
color='black')
),
xaxis=dict(title='win rate',
nticks=30,
tickfont=dict(
size=10,
color='black')
)
)
fig = go.Figure(data=data, layout=layout)
py.iplot(fig, filename='hero_winrates_' + mmr_info)
示例9: pick_statistics
# 需要導入模塊: from plotly import plotly [as 別名]
# 或者: from plotly.plotly import iplot [as 別名]
def pick_statistics(dataset_df, mmr_info):
x_data, y_data = dataset_df
wins = np.zeros(114)
games = np.zeros(114)
pick_rate = np.zeros(114)
for idx, game in enumerate(x_data):
for i in range(228):
if game[i] == 1:
games[i % 114] += 1
if y_data[idx] == 1:
if i < 114:
wins[i] += 1
else:
if i >= 114:
wins[i - 114] += 1
pick_rate = games / np.sum(games)
pick_rate_dict = dict()
hero_dict = get_hero_dict()
for i in range(114):
if i != 23:
pick_rate_dict[hero_dict[i + 1]] = pick_rate[i]
sorted_pickrates = sorted(pick_rate_dict.items(), key=operator.itemgetter(1))
x_plot_data = [x[0] for x in sorted_pickrates]
y_plot_data = [x[1] for x in sorted_pickrates]
title = 'Hero pick rates at ' + mmr_info + ' MMR'
data = [go.Bar(
y=x_plot_data,
x=y_plot_data * 100,
orientation='h'
)]
layout = go.Layout(
title=title,
width=1000,
height=1400,
yaxis=dict(title='hero',
ticks='',
nticks=114,
tickfont=dict(
size=8,
color='black')
),
xaxis=dict(title='pick rate',
nticks=30,
tickfont=dict(
size=10,
color='black')
)
)
fig = go.Figure(data=data, layout=layout)
py.iplot(fig, filename='hero_pickrates_' + mmr_info)
示例10: plot_on_map
# 需要導入模塊: from plotly import plotly [as 別名]
# 或者: from plotly.plotly import iplot [as 別名]
def plot_on_map(locations):
"""
:params locations: The locations which have to be plotted
Plots the point passed
"""
mapbox_access_token = 'pk.eyJ1IjoiYW5pbWVzaHNpbmdoIiwiYSI6ImNqcGM1MHpyeDJ0eHgzcXBoZDNrd3dyNnIifQ.N32_UbaPj_KSHkuIJfl33w'
lat1 = list()
long1 = list()
lat_sum = 0
long_sum = 0
for i in locations:
lat1.append(str(i[0]))
long1.append(str(i[1]))
lat_sum += i[0]
long_sum += i[1]
avg_lat = (lat_sum/len(locations))
avg_long = (long_sum/len(locations))
data = [
go.Scattermapbox(
lat=lat1,
lon=long1,
mode='markers',
marker=dict(
size=14
),
text=['Locations'],
)
]
layout = go.Layout(
autosize=True,
hovermode='closest',
mapbox=dict(
accesstoken=mapbox_access_token,
bearing=0,
center=dict(
lat=avg_lat,
lon=avg_long
),
pitch=0,
zoom=6
),
)
fig = dict(data=data, layout=layout)
name = input('Enter your name: ')
file = 'Location History-' + name
print("View your plot in your browser at https://plot.ly/~animeshsingh38/ where it is named ",file)
py.iplot(fig, filename=file)
示例11: iplot
# 需要導入模塊: from plotly import plotly [as 別名]
# 或者: from plotly.plotly import iplot [as 別名]
def iplot(figure_or_data, **plot_options):
"""Create a unique url for this plot in Plotly and open in IPython.
plot_options keyword agruments:
filename (string) -- the name that will be associated with this figure
fileopt ('new' | 'overwrite' | 'extend' | 'append')
- 'new': create a new, unique url for this plot
- 'overwrite': overwrite the file associated with `filename` with this
- 'extend': add additional numbers (data) to existing traces
- 'append': add additional traces to existing data lists
sharing ('public' | 'private' | 'secret') -- Toggle who can view this graph
- 'public': Anyone can view this graph. It will appear in your profile
and can appear in search engines. You do not need to be
logged in to Plotly to view this chart.
- 'private': Only you can view this plot. It will not appear in the
Plotly feed, your profile, or search engines. You must be
logged in to Plotly to view this graph. You can privately
share this graph with other Plotly users in your online
Plotly account and they will need to be logged in to
view this plot.
- 'secret': Anyone with this secret link can view this chart. It will
not appear in the Plotly feed, your profile, or search
engines. If it is embedded inside a webpage or an IPython
notebook, anybody who is viewing that page will be able to
view the graph. You do not need to be logged in to view
this plot.
world_readable (default=True) -- Deprecated: use "sharing".
Make this figure private/public
"""
if 'auto_open' not in plot_options:
plot_options['auto_open'] = False
url = plot(figure_or_data, **plot_options)
if isinstance(figure_or_data, dict):
layout = figure_or_data.get('layout', {})
else:
layout = {}
embed_options = dict()
embed_options['width'] = layout.get('width', '100%')
embed_options['height'] = layout.get('height', 525)
try:
float(embed_options['width'])
except (ValueError, TypeError):
pass
else:
embed_options['width'] = str(embed_options['width']) + 'px'
try:
float(embed_options['height'])
except (ValueError, TypeError):
pass
else:
embed_options['height'] = str(embed_options['height']) + 'px'
return tools.embed(url, **embed_options)
示例12: save_as
# 需要導入模塊: from plotly import plotly [as 別名]
# 或者: from plotly.plotly import iplot [as 別名]
def save_as(cls, figure_or_data, filename, format=None, width=None,
height=None, scale=None):
"""Save a image of the plot described by `figure_or_data` locally as
`filename`.
Valid image formats are 'png', 'svg', 'jpeg', and 'pdf'.
The format is taken as the extension of the filename or as the
supplied format.
positional arguments:
- figure_or_data: The figure dict-like or data list-like object that
describes a plotly figure.
Same argument used in `py.plot`, `py.iplot`,
see https://plot.ly/python for examples
- filename: The filepath to save the image to
- format: 'png', 'svg', 'jpeg', 'pdf'
- width: output width
- height: output height
- scale: Increase the resolution of the image by `scale` amount
Only valid for PNG and JPEG images.
example:
```
import plotly.plotly as py
fig = {'data': [{'x': [1, 2, 3], 'y': [3, 1, 5], 'type': 'bar'}]}
py.image.save_as(fig, 'my_image.png', scale=3)
```
"""
# todo: format shadows built-in name
(base, ext) = os.path.splitext(filename)
if not ext and not format:
filename += '.png'
elif ext and not format:
format = ext[1:]
elif not ext and format:
filename += '.' + format
img = cls.get(figure_or_data, format, width, height, scale)
f = open(filename, 'wb')
f.write(img)
f.close()