當前位置: 首頁>>代碼示例>>Python>>正文


Python plotly.graph_objs方法代碼示例

本文整理匯總了Python中plotly.graph_objs方法的典型用法代碼示例。如果您正苦於以下問題:Python plotly.graph_objs方法的具體用法?Python plotly.graph_objs怎麽用?Python plotly.graph_objs使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在plotly的用法示例。


在下文中一共展示了plotly.graph_objs方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: generate_chart

# 需要導入模塊: import plotly [as 別名]
# 或者: from plotly import graph_objs [as 別名]
def generate_chart(self, _):
        try:
            import plotly
            import plotly.graph_objs as go
            data = [[0, 0, 0], [0, 0, 0]]
            ok, viol = self.results.get_ok_viol()
            x = ["OK (%d)" % ok, "Tampering (%d)" % viol]
            for ret in self.results:
                i = 1 if ret.is_tampering() else 0
                data[i][0] += ret.is_aligned()
                data[i][1] += ret.is_disaligned()
                data[i][2] += ret.is_single()
            final_data = [go.Bar(x=x, y=[x[0] for x in data], name="Aligned"), go.Bar(x=x, y=[x[1] for x in data], name="Disaligned"), go.Bar(x=x, y=[x[2] for x in data], name="Single")]
            fig = go.Figure(data=final_data, layout=go.Layout(barmode='group', title='Call stack tampering labels'))
            plotly.offline.plot(fig, output_type='file', include_plotlyjs=True, auto_open=True)
        except ImportError:
            self.log("ERROR", "Plotly module not available") 
開發者ID:RobinDavid,項目名稱:idasec,代碼行數:19,代碼來源:callret_analysis.py

示例2: custom_plot

# 需要導入模塊: import plotly [as 別名]
# 或者: from plotly import graph_objs [as 別名]
def custom_plot(data: Any, layout: Any, return_figure=True) -> "plotly.Figure":
    """A custom plotly plot where the data and layout are pre-specified

    Parameters
    ----------
    data : Any
        Plotly data block
    layout : Any
        Plotly layout block
    return_figure : bool, optional
        Returns the raw plotly figure or not
    """

    check_plotly()
    import plotly.graph_objs as go

    figure = go.Figure(data=data, layout=layout)

    return _configure_return(figure, "qcportal-bar", return_figure) 
開發者ID:MolSSI,項目名稱:QCPortal,代碼行數:21,代碼來源:visualization.py

示例3: ensure_plotly

# 需要導入模塊: import plotly [as 別名]
# 或者: from plotly import graph_objs [as 別名]
def ensure_plotly():
    global _plotly_enabled
    try:
        import plotly

        if not _plotly_enabled:
            import plotly.graph_objs
            import plotly.figure_factory
            import plotly.offline

            # This injects javascript and should happen only once
            plotly.offline.init_notebook_mode()
            _plotly_enabled = True
        return plotly
    except ModuleNotFoundError:
        raise RuntimeError("plotly is not installed; plotting is disabled.") 
開發者ID:python-adaptive,項目名稱:adaptive,代碼行數:18,代碼來源:notebook_integration.py

示例4: bar_plot

# 需要導入模塊: import plotly [as 別名]
# 或者: from plotly import graph_objs [as 別名]
def bar_plot(traces: "List[Series]", title=None, ylabel=None, return_figure=True) -> "plotly.Figure":
    """Renders a plotly bar plot

    Parameters
    ----------
    traces : List[Series]
        A list of bar plots to show, if more than one series the resulting graph will be grouped.
    title : None, optional
        The title of the graph
    ylabel : None, optional
        The y axis label
    return_figure : bool, optional
        Returns the raw plotly figure or not

    Returns
    -------
    plotly.Figure
        The requested bar plot.
    """

    check_plotly()
    import plotly.graph_objs as go

    data = [go.Bar(x=trace.index, y=trace, name=trace.name) for trace in traces]

    layout = {}
    if title:
        layout["title"] = title
    if ylabel:
        layout["yaxis"] = {"title": ylabel}
    layout = go.Layout(layout)
    figure = go.Figure(data=data, layout=layout)

    return _configure_return(figure, "qcportal-bar", return_figure) 
開發者ID:MolSSI,項目名稱:QCPortal,代碼行數:36,代碼來源:visualization.py

示例5: plot_data_sources_graph

# 需要導入模塊: import plotly [as 別名]
# 或者: from plotly import graph_objs [as 別名]
def plot_data_sources_graph(filename, output_filename):
    """
    Generates a line graph which shows the improvements on numbers of data sources through time.
    :param filename: the filename of the YAML file containing the data sources administration
    :param output_filename: the output filename defined by the user
    :return:
    """
    # pylint: disable=unused-variable
    my_data_sources, name, platform, exceptions = _load_data_sources(filename)

    graph_values = []
    for t in my_data_sources.values():
        if t['date_connected']:
            yyyymm = t['date_connected'].strftime('%Y-%m')
            graph_values.append({'date': yyyymm, 'count': 1})

    import pandas as pd
    df = pd.DataFrame(graph_values).groupby('date', as_index=False)[['count']].sum()
    df['cumcount'] = df['count'].cumsum()

    if not output_filename:
        output_filename = 'graph_data_sources'
    elif output_filename.endswith('.html'):
        output_filename = output_filename.replace('.html', '')
    output_filename = get_non_existing_filename('output/' + output_filename, 'html')

    import plotly
    import plotly.graph_objs as go
    plotly.offline.plot(
        {'data': [go.Scatter(x=df['date'], y=df['cumcount'])],
         'layout': go.Layout(title="# of data sources for " + name)},
        filename=output_filename, auto_open=False
    )
    print("File written:   " + output_filename) 
開發者ID:rabobank-cdc,項目名稱:DeTTECT,代碼行數:36,代碼來源:data_source_mapping.py

示例6: plot_graph

# 需要導入模塊: import plotly [as 別名]
# 或者: from plotly import graph_objs [as 別名]
def plot_graph(filename, type_graph, output_filename):
    """
    Generates a line graph which shows the improvements on detections through the time.
    :param filename: the filename of the YAML file containing the techniques administration
    :param type_graph: indicates the type of the graph: detection or visibility
    :param output_filename: the output filename defined by the user
    :return:
    """
    # pylint: disable=unused-variable
    my_techniques, name, platform = load_techniques(filename)

    graph_values = []
    for t in my_techniques.values():
        for item in t[type_graph]:
            date = get_latest_date(item)
            if date:
                yyyymm = date.strftime('%Y-%m')
                graph_values.append({'date': yyyymm, 'count': 1})

    import pandas as pd
    df = pd.DataFrame(graph_values).groupby('date', as_index=False)[['count']].sum()
    df['cumcount'] = df['count'].cumsum()

    if not output_filename:
        output_filename = 'graph_' + type_graph
    elif output_filename.endswith('.html'):
        output_filename = output_filename.replace('.html', '')
    output_filename = get_non_existing_filename('output/' + output_filename, 'html')

    import plotly
    import plotly.graph_objs as go
    plotly.offline.plot(
        {'data': [go.Scatter(x=df['date'], y=df['cumcount'])],
         'layout': go.Layout(title="# of %s items for %s" % (type_graph, name))},
        filename=output_filename, auto_open=False
    )
    print("File written:   " + output_filename) 
開發者ID:rabobank-cdc,項目名稱:DeTTECT,代碼行數:39,代碼來源:technique_mapping.py

示例7: violin_plot

# 需要導入模塊: import plotly [as 別名]
# 或者: from plotly import graph_objs [as 別名]
def violin_plot(
    traces: "DataFrame", negative: "DataFrame" = None, title=None, points=False, ylabel=None, return_figure=True
) -> "plotly.Figure":
    """Renders a plotly violin plot

    Parameters
    ----------
    traces : DataFrame
        Pandas DataFrame of points to plot, will create a violin plot of each column.
    negative : DataFrame, optional
        A comparison violin plot, these columns will present the right hand side.
    title : None, optional
        The title of the graph
    points : None, optional
        Show points or not, this option is not available for comparison violin plots.
    ylabel : None, optional
        The y axis label
    return_figure : bool, optional
        Returns the raw plotly figure or not

    Returns
    -------
    plotly.Figure
        The requested violin plot.
    """
    check_plotly()
    import plotly.graph_objs as go

    data = []
    if negative is not None:

        for trace, side in zip([traces, negative], ["positive", "negative"]):
            p = {"name": trace.name, "type": "violin", "box": {"visible": True}}
            p["y"] = trace.stack()
            p["x"] = trace.stack().reset_index().level_1
            p["side"] = side

            data.append(p)
    else:
        for name, series in traces.items():
            p = {"name": name, "type": "violin", "box": {"visible": True}}
            p["y"] = series

            data.append(p)

    layout = go.Layout({"title": title, "yaxis": {"title": ylabel}})
    figure = go.Figure(data=data, layout=layout)

    return _configure_return(figure, "qcportal-violin", return_figure) 
開發者ID:MolSSI,項目名稱:QCPortal,代碼行數:51,代碼來源:visualization.py

示例8: scatter_plot

# 需要導入模塊: import plotly [as 別名]
# 或者: from plotly import graph_objs [as 別名]
def scatter_plot(
    traces: List[Dict[str, Any]],
    mode="lines+markers",
    title=None,
    ylabel=None,
    xlabel=None,
    xline=True,
    yline=True,
    custom_layout=None,
    return_figure=True,
) -> "plotly.Figure":
    """Renders a plotly scatter plot

    Parameters
    ----------
    traces : List[Dict[str, Any]]
        A List of traces to plot, require x and y values
    mode : str, optional
        The mode of lines, will not override mode in the traces dictionary
    title : None, optional
        The title of the graph
    ylabel : None, optional
        The y axis label
    xlabel : None, optional
        The x axis label
    xline : bool, optional
        Show the x-zeroline
    yline : bool, optional
        Show the y-zeroline
    custom_layout : None, optional
        Overrides all other layout options
    return_figure : bool, optional
        Returns the raw plotly figure or not

    Returns
    -------
    plotly.Figure
        The requested scatter plot.

    """
    check_plotly()
    import plotly.graph_objs as go

    data = []
    for trace in traces:
        data.append(go.Scatter(**trace))

    if custom_layout is None:
        layout = go.Layout(
            {
                "title": title,
                "yaxis": {"title": ylabel, "zeroline": yline},
                "xaxis": {"title": xlabel, "zeroline": xline},
            }
        )
    else:
        layout = go.Layout(**custom_layout)
    figure = go.Figure(data=data, layout=layout)

    return _configure_return(figure, "qcportal-violin", return_figure) 
開發者ID:MolSSI,項目名稱:QCPortal,代碼行數:62,代碼來源:visualization.py

示例9: update_graph_scatter

# 需要導入模塊: import plotly [as 別名]
# 或者: from plotly import graph_objs [as 別名]
def update_graph_scatter(sentiment_term):
    try:
        if sentiment_term:
            df = pd.read_sql("SELECT sentiment.* FROM sentiment_fts fts LEFT JOIN sentiment ON fts.rowid = sentiment.id WHERE fts.sentiment_fts MATCH ? ORDER BY fts.rowid DESC LIMIT 1000", conn, params=(sentiment_term+'*',))
        else:
            df = pd.read_sql("SELECT * FROM sentiment ORDER BY id DESC, unix DESC LIMIT 1000", conn)
        df.sort_values('unix', inplace=True)
        df['date'] = pd.to_datetime(df['unix'], unit='ms')
        df.set_index('date', inplace=True)
        init_length = len(df)
        df['sentiment_smoothed'] = df['sentiment'].rolling(int(len(df)/5)).mean()
        df = df_resample_sizes(df)
        X = df.index
        Y = df.sentiment_smoothed.values
        Y2 = df.volume.values
        data = plotly.graph_objs.Scatter(
                x=X,
                y=Y,
                name='Sentiment',
                mode= 'lines',
                yaxis='y2',
                line = dict(color = (app_colors['sentiment-plot']),
                            width = 4,)
                )

        data2 = plotly.graph_objs.Bar(
                x=X,
                y=Y2,
                name='Volume',
                marker=dict(color=app_colors['volume-bar']),
                )

        return {'data': [data,data2],'layout' : go.Layout(xaxis=dict(range=[min(X),max(X)]),
                                                          yaxis=dict(range=[min(Y2),max(Y2*4)], title='Volume', side='right'),
                                                          yaxis2=dict(range=[min(Y),max(Y)], side='left', overlaying='y',title='sentiment'),
                                                          title='Live sentiment for: "{}"'.format(sentiment_term),
                                                          font={'color':app_colors['text']},
                                                          plot_bgcolor = app_colors['background'],
                                                          paper_bgcolor = app_colors['background'],
                                                          showlegend=False)}

    except Exception as e:
        with open('errors.txt','a') as f:
            f.write(str(e))
            f.write('\n') 
開發者ID:Sentdex,項目名稱:socialsentiment,代碼行數:47,代碼來源:dash_mess.py

示例10: update_hist_graph_scatter

# 需要導入模塊: import plotly [as 別名]
# 或者: from plotly import graph_objs [as 別名]
def update_hist_graph_scatter(sentiment_term):
    try:
        if sentiment_term:
            df = pd.read_sql("SELECT sentiment.* FROM sentiment_fts fts LEFT JOIN sentiment ON fts.rowid = sentiment.id WHERE fts.sentiment_fts MATCH ? ORDER BY fts.rowid DESC LIMIT 10000", conn, params=(sentiment_term+'*',))
        else:
            df = pd.read_sql("SELECT * FROM sentiment ORDER BY id DESC, unix DESC LIMIT 10000", conn)
        df.sort_values('unix', inplace=True)
        df['date'] = pd.to_datetime(df['unix'], unit='ms')
        df.set_index('date', inplace=True)
        # save this to a file, then have another function that
        # updates because of this, using intervals to read the file.
        # https://community.plot.ly/t/multiple-outputs-from-single-input-with-one-callback/4970

        # store related sentiments in cache
        cache.set('related_terms', sentiment_term, related_sentiments(df, sentiment_term), 120)

        #print(related_sentiments(df,sentiment_term), sentiment_term)
        init_length = len(df)
        df['sentiment_smoothed'] = df['sentiment'].rolling(int(len(df)/5)).mean()
        df.dropna(inplace=True)
        df = df_resample_sizes(df,maxlen=500)
        X = df.index
        Y = df.sentiment_smoothed.values
        Y2 = df.volume.values

        data = plotly.graph_objs.Scatter(
                x=X,
                y=Y,
                name='Sentiment',
                mode= 'lines',
                yaxis='y2',
                line = dict(color = (app_colors['sentiment-plot']),
                            width = 4,)
                )

        data2 = plotly.graph_objs.Bar(
                x=X,
                y=Y2,
                name='Volume',
                marker=dict(color=app_colors['volume-bar']),
                )

        df['sentiment_shares'] = list(map(pos_neg_neutral, df['sentiment']))

        #sentiment_shares = dict(df['sentiment_shares'].value_counts())
        cache.set('sentiment_shares', sentiment_term, dict(df['sentiment_shares'].value_counts()), 120)

        return {'data': [data,data2],'layout' : go.Layout(xaxis=dict(range=[min(X),max(X)]), # add type='category to remove gaps'
                                                          yaxis=dict(range=[min(Y2),max(Y2*4)], title='Volume', side='right'),
                                                          yaxis2=dict(range=[min(Y),max(Y)], side='left', overlaying='y',title='sentiment'),
                                                          title='Longer-term sentiment for: "{}"'.format(sentiment_term),
                                                          font={'color':app_colors['text']},
                                                          plot_bgcolor = app_colors['background'],
                                                          paper_bgcolor = app_colors['background'],
                                                          showlegend=False)}

    except Exception as e:
        with open('errors.txt','a') as f:
            f.write(str(e))
            f.write('\n') 
開發者ID:Sentdex,項目名稱:socialsentiment,代碼行數:62,代碼來源:dash_mess.py

示例11: DrawScatters

# 需要導入模塊: import plotly [as 別名]
# 或者: from plotly import graph_objs [as 別名]
def DrawScatters(savefolder, annoFile, visMethod, cords, annos):
    import plotly
    import plotly.graph_objs as go
    annText = os.path.basename(annoFile).split('.')[0]
        
    for kind in ['cell type', 'top sample']:
        if kind not in annos.columns:
            continue
        annotationList = sorted(list(set(annos.ix[:,kind])))
        
        import seaborn as sns 
        colorList = sns.hls_palette(n_colors=len(annotationList))
        
        data = []
        annoLen = 0
        for annoIdx in range(len(annotationList)):
            annoNames = annotationList[annoIdx]
            if len(annoNames) > annoLen:
                annoLen = len(annoNames)
            indicesOfAnno = annos[kind]==annoNames
            text = []
            for idx in annos.index[indicesOfAnno]:
                show_text = '%s: %s, barcode: %s' % (kind, annoNames, idx)
                text.append(show_text)
            trace = go.Scatter(
                x = cords.ix[annos.index[indicesOfAnno],'x'],
                y = cords.ix[annos.index[indicesOfAnno],'y'],
                name = annoNames,
                mode = 'markers',
                marker=dict(
                    color='rgb(%s, %s, %s)' % colorList[annoIdx],
                    size=5,
                    symbol='circle',
                    line=dict(
                        color='rgb(204, 204, 204)',
                        width=1
                    ),
                    opacity=0.9
                ),
                text = text,
             )
            data.append(trace)
        if annoLen < 35:
            layout = go.Layout(legend=dict(orientation="v"),autosize=True,showlegend=True)
        else:
            layout = go.Layout(legend=dict(orientation="v"),autosize=True,showlegend=False)
        fig = go.Figure(data=data, layout=layout)
        fn = os.path.join(savefolder, '%s_%s_%s.html' % (annText, kind.replace(' ', '_'), visMethod))
        print('##########saving plot: %s' % fn)
        plotly.offline.plot(fig, filename=fn)

#start to visualise test dataset 
開發者ID:asrhou,項目名稱:scMatch,代碼行數:54,代碼來源:visAnnos.py


注:本文中的plotly.graph_objs方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。