本文整理匯總了Python中plotly.graph_objs.Layout方法的典型用法代碼示例。如果您正苦於以下問題:Python graph_objs.Layout方法的具體用法?Python graph_objs.Layout怎麽用?Python graph_objs.Layout使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類plotly.graph_objs
的用法示例。
在下文中一共展示了graph_objs.Layout方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plotly_histogram
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Layout [as 別名]
def plotly_histogram(array, color="#4CB391", title=None, xlabel=None, ylabel=None):
data = [go.Histogram(x=array,
opacity=0.4,
marker=dict(color=color))]
html = plotly.offline.plot(
{"data": data,
"layout": go.Layout(barmode='overlay',
title=title,
yaxis_title=ylabel,
xaxis_title=xlabel)},
output_type="div",
show_link=False)
fig = go.Figure(
{"data": data,
"layout": go.Layout(barmode='overlay',
title=title)})
return html, fig
示例2: create_label
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Layout [as 別名]
def create_label(y_col, x_col, title=None, y_title=None, x_title=None, legend_name=None):
'''Create label dict for go.Layout with smart resolution'''
legend_name = legend_name or y_col
y_col_list, x_col_list, legend_name_list = ps.map_(
[y_col, x_col, legend_name], util.cast_list)
y_title = str(y_title or ','.join(y_col_list))
x_title = str(x_title or ','.join(x_col_list))
title = title or f'{y_title} vs {x_title}'
label = {
'y_title': y_title,
'x_title': x_title,
'title': title,
'y_col_list': y_col_list,
'x_col_list': x_col_list,
'legend_name_list': legend_name_list,
}
return label
示例3: generate_chart
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Layout [as 別名]
def generate_chart(self, _):
try:
import plotly
import plotly.graph_objs as go
data = [[0, 0, 0], [0, 0, 0]]
ok, viol = self.results.get_ok_viol()
x = ["OK (%d)" % ok, "Tampering (%d)" % viol]
for ret in self.results:
i = 1 if ret.is_tampering() else 0
data[i][0] += ret.is_aligned()
data[i][1] += ret.is_disaligned()
data[i][2] += ret.is_single()
final_data = [go.Bar(x=x, y=[x[0] for x in data], name="Aligned"), go.Bar(x=x, y=[x[1] for x in data], name="Disaligned"), go.Bar(x=x, y=[x[2] for x in data], name="Single")]
fig = go.Figure(data=final_data, layout=go.Layout(barmode='group', title='Call stack tampering labels'))
plotly.offline.plot(fig, output_type='file', include_plotlyjs=True, auto_open=True)
except ImportError:
self.log("ERROR", "Plotly module not available")
示例4: make_layout
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Layout [as 別名]
def make_layout(xkey, xscale, ykey, yscale):
opts_dict = {
'margin': {
'l': 40,
'b': 40,
't': 10,
'r': 10
},
'legend': {
'x': 0,
'y': 1
},
'hovermode': 'closest'
}
return go.Layout(xaxis={
'type': xscale,
'title': xkey
},
yaxis={
'type': yscale,
'title': ykey
},
**opts_dict)
示例5: observation_plan
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Layout [as 別名]
def observation_plan(target, facility, length=7, interval=60, airmass_limit=None):
"""
Displays form and renders plot for visibility calculation. Using this templatetag to render a plot requires that
the context of the parent view have values for start_time, end_time, and airmass.
"""
visibility_graph = ''
start_time = datetime.now()
end_time = start_time + timedelta(days=length)
visibility_data = get_sidereal_visibility(target, start_time, end_time, interval, airmass_limit)
plot_data = [
go.Scatter(x=data[0], y=data[1], mode='lines', name=site) for site, data in visibility_data.items()
]
layout = go.Layout(yaxis=dict(autorange='reversed'))
visibility_graph = offline.plot(
go.Figure(data=plot_data, layout=layout), output_type='div', show_link=False
)
return {
'visibility_graph': visibility_graph
}
示例6: _draw_scatter
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Layout [as 別名]
def _draw_scatter(all_vocabs, all_freqs, output_prefix):
colors = [(s and t) and (s < t and s / t or t / s) or 0
for s, t in all_freqs]
colors = [c and np.log(c) or 0 for c in colors]
trace = go.Scattergl(
x=[s for s, t in all_freqs],
y=[t for s, t in all_freqs],
mode='markers',
text=all_vocabs,
marker=dict(color=colors, showscale=True, colorscale='Viridis'))
layout = go.Layout(
title='Scatter plot of shared tokens',
hovermode='closest',
xaxis=dict(title='src freq', type='log', autorange=True),
yaxis=dict(title='trg freq', type='log', autorange=True))
fig = go.Figure(data=[trace], layout=layout)
py.plot(
fig, filename='{}_scatter.html'.format(output_prefix), auto_open=False)
示例7: test_generate_group_bar_charts
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Layout [as 別名]
def test_generate_group_bar_charts(self, mock_py):
x_values = [
[5.10114882, 5.0194652482, 4.9908093076],
[4.5824497358, 4.7083614037, 4.3812775722],
[2.6839471308, 3.0441476209, 3.6403820447]
]
y_values = ['#kubuntu-devel', '#ubuntu-devel', '#kubuntu']
trace_headers = ['head1', 'head2', 'head3']
test_data = [
go.Bar(
x=x_values,
y=y_values[i],
name=trace_headers[i]
) for i in range(len(y_values))
]
layout = go.Layout(barmode='group')
fig = go.Figure(data=test_data, layout=layout)
vis.generate_group_bar_charts(y_values, x_values, trace_headers, self.test_data_dir, 'test_group_bar_chart')
self.assertEqual(mock_py.call_count, 1)
self.assertEqual(fig.get('data')[0], mock_py.call_args[0][0].get('data')[0])
示例8: get_figure3d
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Layout [as 別名]
def get_figure3d(points3d, gt=None, range_scale=1):
"""Yields plotly fig for visualization"""
traces = get_trace3d(points3d, BLUE, BLUE, "prediction")
if gt is not None:
traces += get_trace3d(gt, RED, RED, "groundtruth")
layout = go.Layout(
scene=dict(
aspectratio=dict(x=0.8,
y=0.8,
z=2),
xaxis=dict(range=(-0.4 * range_scale, 0.4 * range_scale),),
yaxis=dict(range=(-0.4 * range_scale, 0.4 * range_scale),),
zaxis=dict(range=(-1 * range_scale, 1 * range_scale),),),
width=700,
margin=dict(r=20, l=10, b=10, t=10))
return go.Figure(data=traces, layout=layout)
示例9: heating_reset_schedule
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Layout [as 別名]
def heating_reset_schedule(data_frame, analysis_fields, title, output_path):
# CREATE FIRST PAGE WITH TIMESERIES
traces = []
x = data_frame["T_ext_C"].values
data_frame = data_frame.replace(0, np.nan)
for field in analysis_fields:
y = data_frame[field].values
name = NAMING[field]
trace = go.Scattergl(x=x, y=y, name=name, mode='markers',
marker=dict(color=COLOR[field]))
traces.append(trace)
layout = go.Layout(images=LOGO, title=title,
xaxis=dict(title='Outdoor Temperature [C]'),
yaxis=dict(title='HVAC System Temperature [C]'))
fig = go.Figure(data=traces, layout=layout)
plot(fig, auto_open=False, filename=output_path)
return {'data': traces, 'layout': layout}
示例10: peak_load_district
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Layout [as 別名]
def peak_load_district(data_frame_totals, analysis_fields, title, output_path):
traces = []
data_frame_totals['total'] = data_frame_totals[analysis_fields].sum(axis=1)
data_frame_totals = data_frame_totals.sort_values(by='total',
ascending=False) # this will get the maximum value to the left
for field in analysis_fields:
y = data_frame_totals[field]
total_perc = (y / data_frame_totals['total'] * 100).round(2).values
total_perc_txt = ["(" + str(x) + " %)" for x in total_perc]
name = NAMING[field]
trace = go.Bar(x=data_frame_totals["Name"], y=y, name=name,
marker=dict(color=COLOR[field]))
traces.append(trace)
layout = go.Layout(title=title, barmode='group', yaxis=dict(title='Peak Load [kW]'), showlegend=True)
fig = go.Figure(data=traces, layout=layout)
plot(fig, auto_open=False, filename=output_path)
return {'data': traces, 'layout': layout}
示例11: energy_use_intensity
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Layout [as 別名]
def energy_use_intensity(data_frame, analysis_fields, title, output_path):
# CREATE FIRST PAGE WITH TIMESERIES
traces = []
area = data_frame["GFA_m2"]
x = ["Absolute [MWh/yr]", "Relative [kWh/m2.yr]"]
for field in analysis_fields:
name = NAMING[field]
y = [data_frame[field], data_frame[field] / area * 1000]
trace = go.Bar(x=x, y=y, name=name,
marker=dict(color=COLOR[field]))
traces.append(trace)
layout = go.Layout(images=LOGO, title=title, barmode='stack', showlegend=True)
fig = go.Figure(data=traces, layout=layout)
plot(fig, auto_open=False, filename=output_path)
return {'data': traces, 'layout': layout}
示例12: energy_use_intensity_district
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Layout [as 別名]
def energy_use_intensity_district(data_frame, analysis_fields, title, output_path):
traces = []
data_frame_copy = data_frame.copy() # make a copy to avoid passing new data of the dataframe around the class
for field in analysis_fields:
data_frame_copy[field] = data_frame_copy[field] * 1000 / data_frame_copy["GFA_m2"] # in kWh/m2y
data_frame_copy['total'] = data_frame_copy[analysis_fields].sum(axis=1)
data_frame_copy = data_frame_copy.sort_values(by='total',
ascending=False) # this will get the maximum value to the left
x = data_frame_copy["Name"].tolist()
for field in analysis_fields:
y = data_frame_copy[field]
name = NAMING[field]
trace = go.Bar(x=x, y=y, name=name, marker=dict(color=COLOR[field]))
traces.append(trace)
layout = go.Layout(images=LOGO, title=title, barmode='stack', yaxis=dict(title='Energy Use Intensity [kWh/m2.yr]'),
showlegend=True)
fig = go.Figure(data=traces, layout=layout)
plot(fig, auto_open=False, filename=output_path)
return {'data': traces, 'layout': layout}
示例13: peak_load_building
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Layout [as 別名]
def peak_load_building(data_frame, analysis_fields, title, output_path):
# CREATE FIRST PAGE WITH TIMESERIES
traces = []
area = data_frame["GFA_m2"]
data_frame = data_frame[analysis_fields]
x = ["Absolute [kW] ", "Relative [W/m2]"]
for field in analysis_fields:
y = [data_frame[field], data_frame[field] / area * 1000]
name = NAMING[field]
trace = go.Bar(x=x, y=y, name=name,
marker=dict(color=COLOR[field]))
traces.append(trace)
layout = go.Layout(images=LOGO, title=title, barmode='group', yaxis=dict(title='Peak Load'), showlegend=True)
fig = go.Figure(data=traces, layout=layout)
plot(fig, auto_open=False, filename=output_path)
return {'data': traces, 'layout': layout}
示例14: __init__
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Layout [as 別名]
def __init__(self,visuals,datasource,**kwargs):
Options.__init__(self,**kwargs)
widgets.VBox.__init__(self,layout=widgets.Layout(width=self.getOpt("width","95%"),height=self.getOpt("height","95%"),border=visuals.getOpt("border","0"),padding=visuals.getOpt("padding","10px"),margin=visuals.getOpt("margin","10px")))
self._visuals = visuals
self._datasource = datasource
self._figure = None
self._data = None
self._layout = None
self._controls = None
self._title = widgets.HTML(layout=widgets.Layout(overflow="hidden"))
self._banner = widgets.VBox([self._title])
示例15: create
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Layout [as 別名]
def create(self):
self.createContent()
if self._data != None:
self._layout = go.Layout()
margin = 20
self._layout["margin"] = dict(l=margin,r=margin,b=margin,t=margin)
xRange = self.getOpt("xrange")
if xRange != None:
self._layout["xaxis"]["range"] = xRange
yRange = self.getOpt("yrange")
if yRange != None:
self._layout["yaxis"]["range"] = yRange
self._layout["xaxis"]["showticklabels"] = self.getOpt("showticks",True)
self._layout["xaxis"]["showline"] = False
self._figure = go.FigureWidget(data=self._data,layout=self._layout)
children = [self._banner,self._figure]
if self.getOpt("show_controls",False):
if self._controls == None:
self._controls = ControlPanel(self._datasource)
children.append(self._controls)
self.children = children
self.draw(None,True)