當前位置: 首頁>>代碼示例>>Python>>正文


Python graph_objs.Histogram方法代碼示例

本文整理匯總了Python中plotly.graph_objs.Histogram方法的典型用法代碼示例。如果您正苦於以下問題:Python graph_objs.Histogram方法的具體用法?Python graph_objs.Histogram怎麽用?Python graph_objs.Histogram使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在plotly.graph_objs的用法示例。


在下文中一共展示了graph_objs.Histogram方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: plotly_histogram

# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Histogram [as 別名]
def plotly_histogram(array, color="#4CB391", title=None, xlabel=None, ylabel=None):
    data = [go.Histogram(x=array,
                         opacity=0.4,
                         marker=dict(color=color))]
    html = plotly.offline.plot(
        {"data": data,
         "layout": go.Layout(barmode='overlay',
                             title=title,
                             yaxis_title=ylabel,
                             xaxis_title=xlabel)},
        output_type="div",
        show_link=False)
    fig = go.Figure(
        {"data": data,
         "layout": go.Layout(barmode='overlay',
                             title=title)})
    return html, fig 
開發者ID:wdecoster,項目名稱:NanoPlot,代碼行數:19,代碼來源:nanoplotter_main.py

示例2: mmr_distribution

# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Histogram [as 別名]
def mmr_distribution(csv_file):
    dataset = pd.read_csv(csv_file)

    data = [go.Histogram(x=dataset[:30000]['avg_mmr'])]

    layout = go.Layout(
        title='MMR distribution (sample of 30k games)'
    )

    fig = go.Figure(data=data, layout=layout)

    py.iplot(fig, filename='MMR_distribution') 
開發者ID:andreiapostoae,項目名稱:dota2-predictor,代碼行數:14,代碼來源:dataset_stats.py

示例3: update_market_prices_hist

# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Histogram [as 別名]
def update_market_prices_hist():
    global selected_dropdown_value
    global data
    prices = data.get_prices(selected_dropdown_value)
    prices = [list(p) for p in zip(*prices)]
    if len(prices) > 0:
        traces = []
        for i, key in enumerate(['bid', 'ask']):
            trace = go.Histogram(x=prices[i][-200:],
                                 name=key,
                                 opacity=0.8)
            traces.append(trace)
        return {
            'data': traces,
            'layout': dict(title="Market Prices Histogram (200 Most Recent)")
        } 
開發者ID:bshaw19,項目名稱:Crypto_Trader,代碼行數:18,代碼來源:Data_Grabber.py

示例4: update_spread_hist

# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Histogram [as 別名]
def update_spread_hist():
    global selected_dropdown_value
    global data
    prices = data.get_prices(selected_dropdown_value)
    prices = [list(p) for p in zip(*prices)]
    if len(prices) > 0:
        traces = []
        trace = go.Histogram(x=list(prices[2][-200:]),
                             name='spread',
                             marker=dict(color='rgba(114, 186, 59, 0.5)'))
        traces.append(trace)

        return {
            'data': traces,
            'layout': dict(title="Spread Histogram (200 Most Recent)")
        } 
開發者ID:bshaw19,項目名稱:Crypto_Trader,代碼行數:18,代碼來源:Data_Grabber.py

示例5: create_trace

# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Histogram [as 別名]
def create_trace(settings):
        return [graph_objs.Histogram(
                x=settings.x,
                y=settings.x,
                name=settings.data_defined_legend_title if settings.data_defined_legend_title != '' else settings.properties['name'],
                orientation=settings.properties['box_orientation'],
                nbinsx=settings.properties['bins'],
                nbinsy=settings.properties['bins'],
                marker=dict(
                    color=settings.data_defined_colors if settings.data_defined_colors else settings.properties['in_color'],
                    line=dict(
                        color=settings.data_defined_stroke_colors if settings.data_defined_stroke_colors else settings.properties['out_color'],
                        width=settings.data_defined_stroke_widths if settings.data_defined_stroke_widths else settings.properties['marker_width']
                    )
                ),
                histnorm=settings.properties['normalization'],
                opacity=settings.properties['opacity'],
                cumulative=dict(
                    enabled=settings.properties['cumulative'],
                    direction=settings.properties['invert_hist']
                )
            )] 
開發者ID:ghtmtt,項目名稱:DataPlotly,代碼行數:24,代碼來源:histogram.py

示例6: modified_fraction_histogram

# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Histogram [as 別名]
def modified_fraction_histogram(full):
    traces = [go.Histogram(x=full[dataset].dropna(),
                           histnorm='probability density',
                           xbins=dict(start=0, size=0.01, end=1),
                           name=dataset,
                           opacity=0.6
                           )
              for dataset in full.columns]
    layout = dict(barmode="overlay",
                  title="Histogram of modified fractions",
                  xaxis=dict(title="Modified fraction"),
                  yaxis=dict(title="Frequency"))
    return plotly.offline.plot(dict(data=traces,
                                    layout=layout),
                               output_type="div",
                               show_link=False,
                               include_plotlyjs='cdn') 
開發者ID:wdecoster,項目名稱:methplotlib,代碼行數:19,代碼來源:qc.py

示例7: update_histogram

# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Histogram [as 別名]
def update_histogram(value):
    return {
        'data':[
           go.Histogram(
            x=df[value]
            )],
        'layout':go.Layout()
            } 
開發者ID:plotly,項目名稱:dash-recipes,代碼行數:10,代碼來源:dash-set-height-of-graph.py

示例8: hist_figure

# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Histogram [as 別名]
def hist_figure(trace_info, varname, ix_slice=None):
    return {
        'data': [
            go.Histogram(x=trace_info.get_values(varname, ix_slice=ix_slice))
        ],
        'layout': go.Layout(
            yaxis={'title': "Frequency"}
        )
    } 
開發者ID:AustinRochford,項目名稱:webmc3,代碼行數:11,代碼來源:components.py

示例9: name

# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Histogram [as 別名]
def name():
        return PlotType.tr('Histogram') 
開發者ID:ghtmtt,項目名稱:DataPlotly,代碼行數:4,代碼來源:histogram.py

示例10: Plot_Histogram

# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Histogram [as 別名]
def Plot_Histogram(self, pathFigure):
        '''Hace un plot del histograma de la distribucion de la lluvia en la cuenca.'''
        #Hace una cipia de la informacion
        Data = self.rainData.copy()
        Data = Data[' Lluvia'].values
        Data = Data[Data>0]
        step = (np.percentile(Data,95) - np.percentile(Data,5))/7.
        #Genera los datos de la figura
        trace1 = go.Histogram(
            x = Data,
            name = 'Lluvia [mm]',
            xbins = dict(
                start = np.percentile(Data,5),
                end = np.percentile(Data,95),
                size = step)
        )
        #Establece la configuracion de la misma
        layout = dict(
            width=400,
            height=400,
            showlegend = False,
            margin=dict(
                l=50,
                r=50,
                b=70,
                t=50,
                pad=4
            ),
            yaxis=dict(
                title='PDF',
                titlefont=dict(
                    color='rgb(0, 102, 153)',
                    size = 15
                    ),
                tickangle=45,
                tickfont=dict(
                    color='rgb(0, 102, 153)',
                    size = 16,            
                    ),),
            xaxis = dict(
                title = 'Lluvia [mm]',
                titlefont =dict(
                    color='rgb(0, 102, 153)',
                    size = 15
                    ),
                tickfont=dict(
                    color='rgb(0, 102, 153)',
                    size = 16,            
                    )
                )
            )
        #Monta la figura 
        data = [trace1]
        fig = dict(data = data, layout = layout)
        plot(fig,filename=pathFigure, auto_open = False) 
開發者ID:nicolas998,項目名稱:WMF,代碼行數:57,代碼來源:HydroSEDPlots.py


注:本文中的plotly.graph_objs.Histogram方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。