當前位置: 首頁>>代碼示例>>Python>>正文


Python graph_objs.Heatmap方法代碼示例

本文整理匯總了Python中plotly.graph_objs.Heatmap方法的典型用法代碼示例。如果您正苦於以下問題:Python graph_objs.Heatmap方法的具體用法?Python graph_objs.Heatmap怎麽用?Python graph_objs.Heatmap使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在plotly.graph_objs的用法示例。


在下文中一共展示了graph_objs.Heatmap方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: run_query

# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Heatmap [as 別名]
def run_query(ont, aset, args):
    """
    Basic querying by positive/negative class lists
    """
    subjects = aset.query(args.query, args.negative)
    for s in subjects:
        print("{} {}".format(s, str(aset.label(s))))

    if args.plot:
        import plotly.plotly as py
        import plotly.graph_objs as go
        tups = aset.query_associations(subjects=subjects)
        z, xaxis, yaxis = tuple_to_matrix(tups)
        spacechar = " "
        xaxis = mk_axis(xaxis, aset, args, spacechar=" ")
        yaxis = mk_axis(yaxis, aset, args, spacechar=" ")
        logging.info("PLOTTING: {} x {} = {}".format(xaxis, yaxis, z))
        trace = go.Heatmap(z=z,
                           x=xaxis,
                           y=yaxis)
        data=[trace]
        py.plot(data, filename='labelled-heatmap') 
開發者ID:biolink,項目名稱:ontobio,代碼行數:24,代碼來源:ontobio-assoc.py

示例2: run_query_associations

# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Heatmap [as 別名]
def run_query_associations(ont, aset, args):
    if args.dendrogram:
        plot_subject_term_matrix(ont, aset, args)
        return
    import plotly.plotly as py
    import plotly.graph_objs as go
    tups = aset.query_associations(subjects=args.subjects)
    for (s,c) in tups:
        print("{} {}".format(s, c))
    z, xaxis, yaxis = tuple_to_matrix(tups)
    xaxis = mk_axis(xaxis, aset, args)
    yaxis = mk_axis(yaxis, aset, args)
    logging.info("PLOTTING: {} x {} = {}".format(xaxis, yaxis, z))
    trace = go.Heatmap(z=z,
                       x=xaxis,
                       y=yaxis)
    data=[trace]
    py.plot(data, filename='labelled-heatmap')
    #plot_dendrogram(z, xaxis, yaxis)
    
# TODO: fix this really dumb implementation 
開發者ID:biolink,項目名稱:ontobio,代碼行數:23,代碼來源:ontobio-assoc.py

示例3: csv_heatmap_generator_plotly

# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Heatmap [as 別名]
def csv_heatmap_generator_plotly(in_directory, output_directory, output_file_name):
    """
        Plots heatmaps for all the csv files in the given directory

    Args:
        in_directory (str):  location of input csv files
        output_drectory(str): location to save graph
        output_file_name(str): name of the image file to be saved

    Returns:
        null
    """

    file_list = glob.glob(in_directory+"*.csv")

    for file in file_list:
        csv_data = genfromtxt(file, delimiter=',')

        trace = go.Heatmap(
                z=csv_data,
                x=list(range(48)),
                y=list(range(1, 12)),
                colorscale=[
                [0, 'rgb(255, 255, 204)'],
                [0.13, 'rgb(255, 237, 160)'],
                [0.25, 'rgb(254, 217, 118)'],
                [0.38, 'rgb(254, 178, 76)'],
                [0.5, 'rgb(253, 141, 60)'],
                [0.63, 'rgb(252, 78, 42)'],
                [0.75, 'rgb(227, 26, 28)'],
                [0.88, 'rgb(189, 0, 38)'],
                [1.0, 'rgb(128, 0, 38)']
            ]
        )

        data = [trace]
        layout = go.Layout(title='HeatMap', width=800, height=640)
        fig = go.Figure(data=data, layout=layout)

        py.image.save_as(fig, filename=in_directory+file[file.rfind("/")+1:-4]+'_heatmap.png') 
開發者ID:prasadtalasila,項目名稱:IRCLogParser,代碼行數:42,代碼來源:vis.py

示例4: test_csv_heatmap_generator_plotly

# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Heatmap [as 別名]
def test_csv_heatmap_generator_plotly(self, mock_py):
        test_data = np.array([[5075, 507, 634, 7237, 3421, 7522, 12180, 9635, 7381, 7967, 6224, 2712, 4758, 2704, 1763,
                               1869, 4428, 1680],
                              [1652, 425, 269, 982, 2687, 15318, 3865, 3213, 4411, 6821, 1960, 7007, 883, 4592, 0, 3271,
                               619, 1508],
                              [1578, 924, 409, 1115, 6088, 491, 1923, 10700, 16206, 8690, 1350, 3778, 237, 1095, 20639,
                               2669, 1956, 6015]])

        trace = go.Heatmap(
            z=test_data,
            x=list(range(48)),
            y=list(range(1, 12)),
            colorscale=[
                [0, 'rgb(255, 255, 204)'],
                [0.13, 'rgb(255, 237, 160)'],
                [0.25, 'rgb(254, 217, 118)'],
                [0.38, 'rgb(254, 178, 76)'],
                [0.5, 'rgb(253, 141, 60)'],
                [0.63, 'rgb(252, 78, 42)'],
                [0.75, 'rgb(227, 26, 28)'],
                [0.88, 'rgb(189, 0, 38)'],
                [1.0, 'rgb(128, 0, 38)']
            ]
        )

        final_data = [trace]
        layout = go.Layout(title='HeatMap', width=800, height=640)
        fig = go.Figure(data=final_data, layout=layout)

        vis.csv_heatmap_generator_plotly(self.test_data_dir + "/vis/", self.test_data_dir, "plotly_heatmap_test")
        self.assertEqual(mock_py.call_count, 1)
        self.assertTrue(fig.get('layout') == mock_py.call_args[0][0].get('layout'))
        np.testing.assert_array_equal(fig.data[0].get('z'), mock_py.call_args[0][0].data[0].get('z')) 
開發者ID:prasadtalasila,項目名稱:IRCLogParser,代碼行數:35,代碼來源:test_vis.py

示例5: plot_intersections

# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Heatmap [as 別名]
def plot_intersections(ont, aset, args):
    import plotly.plotly as py
    import plotly.graph_objs as go
    (z, xaxis, yaxis) = create_intersection_matrix(ont, aset, args)
    trace = go.Heatmap(z=z,
                       x=xaxis,
                       y=yaxis)
    data=[trace]
    py.plot(data, filename='labelled-heatmap') 
開發者ID:biolink,項目名稱:ontobio,代碼行數:11,代碼來源:ontobio-assoc.py

示例6: fig_heatmap

# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Heatmap [as 別名]
def fig_heatmap(df_matrix, title=""):
    """Generate heatmap figure from NxN matrix.

    Args:
        df_matrix (pandas.DataFrame): Matrix as DataFrame. Index values and column values must be equal.
        title (str): Title of plot. Defaults to "".

    Returns:
        plotly.graph_objs.Figure

    """
    trace = go.Heatmap(
        z=df_matrix,
        x=df_matrix.columns,
        y=df_matrix.index,
        hovertemplate='%{y} ---> %{x}<extra>%{z}</extra>',
        colorscale='Greens'
    )
    data = [trace]
    layout = {
        'title': {'text': title},
        'xaxis': {'title': "Receiver"},
        'yaxis': {'title': "Sender"}
    }

    fig = go.Figure(data=data, layout=layout)
    return fig 
開發者ID:lucasrodes,項目名稱:whatstk,代碼行數:29,代碼來源:heatmap.py

示例7: get_figure

# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Heatmap [as 別名]
def get_figure(self):
        from pandas import MultiIndex

        layout = dict(legend=dict(x=0.7, y=1), margin=dict(r=0, t=40))
        is_3d = isinstance(self.table.index, MultiIndex)
        if is_3d:
            import plotly.graph_objs as go
            from plotly import tools

            cols = self.table.columns
            ncols = 2 if len(cols) > 1 else 1
            nrows = len(cols) / ncols + len(cols) % ncols
            fig = tools.make_subplots(
                rows=nrows, cols=ncols, subplot_titles=cols, print_grid=False
            )
            for idx, col in enumerate(cols):
                series = self.table[col]
                z = [s.tolist() for _, s in series.groupby(level=0)]
                fig.append_trace(
                    go.Heatmap(z=z, showscale=False), idx / ncols + 1, idx % ncols + 1
                )
            fig["layout"].update(layout)
        else:
            xaxis = self.config.get("x", self.table.columns[0])
            yaxis = self.config.get("y", None)
            yaxes = (
                [yaxis]
                if yaxis is not None
                else [col for col in self.table.columns if col != xaxis]
            )
            traces = []
            for axis in yaxes:
                if "ₑᵣᵣ" not in axis:
                    tbl = self.table[[xaxis, axis]].replace("", np.nan).dropna()
                    traces.append(
                        dict(x=tbl[xaxis].tolist(), y=tbl[axis].tolist(), name=axis)
                    )
            for trace in traces:
                err_axis = trace["name"] + "ₑᵣᵣ"
                if err_axis in yaxes:
                    errors = self.table[err_axis].replace("", np.nan).dropna()
                    trace["error_y"] = dict(type="data", array=errors, visible=True)
                    trace["mode"] = "markers"
            layout.update(
                dict(
                    xaxis=dict(title=xaxis),
                    yaxis=dict(
                        title=self.config.get("ytitle"),
                        type=self.config.get("yaxis", {}).get("type", "-"),
                    ),
                    showlegend=self.config.get("showlegend", True),
                )
            )
            fig = dict(data=traces, layout=layout)

        return fig 
開發者ID:materialsproject,項目名稱:MPContribs,代碼行數:58,代碼來源:gdata.py

示例8: plot_synergies

# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Heatmap [as 別名]
def plot_synergies():
    synergies = np.loadtxt('pretrained/synergies_all.csv')

    for i in range(114):
        synergies[i, i] = 0.5

    hero_dict = get_hero_dict()

    x_labels = []
    for i in range(114):
        if i != 23:
            x_labels.append(hero_dict[i + 1])

    synergies = np.delete(synergies, [23], 0)
    synergies = np.delete(synergies, [23], 1)

    trace = go.Heatmap(z=synergies,
                       x=x_labels,
                       y=x_labels,
                       colorscale='Viridis')

    layout = go.Layout(
        title='Hero synergies',
        width=1000,
        height=1000,
        xaxis=dict(ticks='',
                   nticks=114,
                   tickfont=dict(
                        size=8,
                        color='black')),
        yaxis=dict(ticks='',
                   nticks=114,
                   tickfont=dict(
                        size=8,
                        color='black'))

    )

    data = [trace]
    fig = go.Figure(data=data, layout=layout)

    py.iplot(fig, filename='heatmap_synergies') 
開發者ID:andreiapostoae,項目名稱:dota2-predictor,代碼行數:44,代碼來源:hero_combinations.py

示例9: plot_counters

# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Heatmap [as 別名]
def plot_counters():
    counters = np.loadtxt('pretrained/counters_all.csv')

    for i in range(114):
        counters[i, i] = 0.5

    hero_dict = get_hero_dict()

    x_labels = []
    for i in range(114):
        if i != 23:
            x_labels.append(hero_dict[i + 1])

    counters = np.delete(counters, [23], 0)
    counters = np.delete(counters, [23], 1)

    trace = go.Heatmap(z=counters,
                       x=x_labels,
                       y=x_labels,
                       colorscale='Viridis')

    layout = go.Layout(
        title='Hero counters (hero1 winrate against hero2)',
        width=1000,
        height=1000,
        xaxis=dict(ticks='',
                   nticks=114,
                   title='hero2',
                   tickfont=dict(
                        size=8,
                        color='black')),
        yaxis=dict(ticks='',
                   nticks=114,
                   title='hero1',
                   tickfont=dict(
                        size=8,
                        color='black'))

    )

    data = [trace]
    fig = go.Figure(data=data, layout=layout)

    py.iplot(fig, filename='heatmap_counters') 
開發者ID:andreiapostoae,項目名稱:dota2-predictor,代碼行數:46,代碼來源:hero_combinations.py

示例10: make_calendar_heatmap_fig

# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Heatmap [as 別名]
def make_calendar_heatmap_fig(n, start_date, end_date):
    start_date = arrow.get(start_date)
    end_date = arrow.get(end_date)

    categories = ["BAT", "Diary", "Exercise"]

    dates = []

    z = []
    for _ in categories:
        z.append([])

    for r in arrow.Arrow.range("day", start_date, end_date):
        offset_day = (arrow.now() - r).days
        record_data = data_handler.read_record(days=-offset_day)
        summary = record_data.get("summary", {})

        for i, category in enumerate(categories):
            do_category = summary.get(f"do_{category.lower()}", False)
            z[i].append(int(do_category))

        dates.append(r.format("YYYY-MM-DD"))

    categories.append("All")
    z_do_all = []

    for i in range(len(dates)):
        do_all = 0
        for item in z:
            do_all += item[i]
        z_do_all.append(do_all)
    z.append(z_do_all)

    fig = go.Figure(
        data=go.Heatmap(
            z=z,
            text=z,
            x=dates,
            y=categories,
            colorscale=[[0, "#FFFFFF"], [1, "#19410a"]],
            xgap=7,
            ygap=7,
        )
    )

    fig.update_layout(
        title="BAT, Diary, Exercise per day",
        height=300,
        xaxis={
            "tickformat": "%a-%m-%d",
            "tickangle": 75,
            "showticklabels": True,
            "dtick": 86400000.0 * 1,  # 1 day
        },
    )

    return fig 
開發者ID:DongjunLee,項目名稱:quantified-self,代碼行數:59,代碼來源:dashboard.py

示例11: channels_activity

# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Heatmap [as 別名]
def channels_activity (self,
        colorscale:list = [
            [0.0,'rgba(255,255,255,0)'],
            [0.01,'rgb(255,255,200)'],
            [0.25,'rgb(255,200,0)'],
            [0.5,'rgb(200,0,0)'],
            [0.75,'rgb(120,0,0)'],
            [1.0,'rgb(0,0,0)']],
        smooth_sigma:float=1,
        time_bins:int=100,
        width:int=None,
        height:int=600,
        plot_title:str="Output per channel over experiment time"):
        """
        Plot a yield over time
        * colorscale
            a valid plotly color scale https://plot.ly/python/colorscales/ (Not recommanded to change)
        * smooth_sigma
            sigma parameter for the Gaussian filter line smoothing
        * time_bins
            Number of bins to divide the time values in (y axis)
        * width
            With of the plotting area in pixel
        * height
            height of the plotting area in pixel
        * plot_title
            Title to display on top of the plot
        """
        self.logger.info ("\t\tComputing plot")

        # Define maximal number of channels
        n_channels = 3000 if self.is_promethion else 512

        # Prepare all data
        lab1, dd1 = self.__channels_activity_data(df_level="all", count_level="reads", n_channels=n_channels, smooth_sigma=smooth_sigma, time_bins=time_bins)
        lab2, dd2 = self.__channels_activity_data(df_level="pass", count_level="reads", n_channels=n_channels, smooth_sigma=smooth_sigma, time_bins=time_bins)
        lab3, dd3 = self.__channels_activity_data(df_level="all", count_level="bases", n_channels=n_channels, smooth_sigma=smooth_sigma, time_bins=time_bins)
        lab4, dd4 = self.__channels_activity_data(df_level="pass", count_level="bases", n_channels=n_channels, smooth_sigma=smooth_sigma, time_bins=time_bins)

        # Plot initial data
        data = [go.Heatmap(x=dd1["x"][0], y=dd1["y"][0], z=dd1["z"][0], xgap=0.5, colorscale=colorscale, hoverinfo="x+y+z")]

        # Create update buttons
        updatemenus = [
            dict (type="buttons", active=0, x=-0.06, y=0, xanchor='right', yanchor='bottom', buttons = [
                dict (label=lab1, method='restyle', args=[dd1]),
                dict (label=lab2, method='restyle', args=[dd2]),
                dict (label=lab3, method='restyle', args=[dd3]),
                dict (label=lab4, method='restyle', args=[dd4])])]

        # tweak plot layout
        layout = go.Layout (
            plot_bgcolor="whitesmoke",
            width = width,
            height = height,
            updatemenus = updatemenus,
            title = {"text":plot_title, "xref":"paper" ,"x":0.5, "xanchor":"center"},
            xaxis = {"title":"Channel id", "zeroline":False, "showline":False, "nticks":20, "showgrid":False},
            yaxis = {"title":"Experiment time (h)", "zeroline":False, "showline":False, "hoverformat":".2f", "fixedrange":True})

        return go.Figure (data=data, layout=layout) 
開發者ID:a-slide,項目名稱:pycoQC,代碼行數:63,代碼來源:pycoQC_plot.py

示例12: main

# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Heatmap [as 別名]
def main():
    """
    Wrapper for OGR
    """

    parser = argparse.ArgumentParser(
        description='Command line interface to python-ontobio.golr library'
        """

        Provides command line interface onto the ontobio.golr python library, a high level
        abstraction layer over Monarch and GO solr indices.
        """,
        formatter_class=argparse.RawTextHelpFormatter)

    parser.add_argument('-o', '--outfile', type=str, required=False,
                        help='Path to output file')
    parser.add_argument('-f', '--facet', type=str, required=True,
                        help='Facet field to query')
    parser.add_argument('-q', '--fq', type=json.loads, default={}, required=False,
                        help='Facet query (solr fq) - should be json')
    parser.add_argument('-Q', '--qargs', type=json.loads, default={}, required=False,
                        help='Query to be passed directly to python golr_associations query')
    parser.add_argument('-P', '--search', nargs='*', type=str, required=False,
                        help='Search fields. E.f subject_category object_category, relation')
    parser.add_argument('-u', '--url', type=str, required=False,
                        help='Solr URL. E.g. http://localhost:8983/solr/golr')
    parser.add_argument('-v', '--verbosity', default=0, action='count',
                        help='Increase output verbosity')


    args = parser.parse_args()

    if args.verbosity >= 2:
        logging.basicConfig(level=logging.DEBUG)
    elif args.verbosity == 1:
        logging.basicConfig(level=logging.INFO)
    else:
        logging.basicConfig(level=logging.WARNING)
        
    logging.info("Welcome!")

    r = search_query_as_matrix(facet=args.facet,
                               fq=args.fq,
                               facet_search_fields=args.search,
                               url=args.url,
                               **args.qargs)

    print(str(r))
    trace = go.Heatmap(z=r['z'],
                       x=r['xaxis'],
                       y=r['yaxis'])
    data=[trace]
    py.plot(data, filename='search-heatmap') 
開發者ID:biolink,項目名稱:ontobio,代碼行數:55,代碼來源:biogolr-fqm.py

示例13: main

# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Heatmap [as 別名]
def main():
    """
    Wrapper for OGR
    """

    parser = argparse.ArgumentParser(
        description='Command line interface to python-ontobio.golr library'
        """

        Provides command line interface onto the ontobio.golr python library, a high level
        abstraction layer over Monarch and GO solr indices.
        """,
        formatter_class=argparse.RawTextHelpFormatter)

    parser.add_argument('-o', '--outfile', type=str, required=False,
                        help='Path to output file')
    parser.add_argument('-f', '--facet', type=str, required=True,
                        help='Facet field to query')
    parser.add_argument('-l', '--legacy_solr', dest='legacy_solr', action='store_true', default=False,
                        help='Set for legacy solr schema (solr3 golr)')
    parser.add_argument('-q', '--fq', type=json.loads, default={}, required=False,
                        help='Facet query (solr fq) - should be json')
    parser.add_argument('-Q', '--qargs', type=json.loads, default={}, required=False,
                        help='Query to be passed directly to python golr_associations query')
    parser.add_argument('-P', '--pivot', nargs='*', type=str, required=False,
                        help='Pivot fields. E.f subject_category object_category, relation')
    parser.add_argument('-u', '--url', type=str, required=False,
                        help='Solr URL. E.g. http://localhost:8983/solr/golr')
    parser.add_argument('-v', '--verbosity', default=0, action='count',
                        help='Increase output verbosity')


    args = parser.parse_args()

    if args.verbosity >= 2:
        logging.basicConfig(level=logging.DEBUG)
    elif args.verbosity == 1:
        logging.basicConfig(level=logging.INFO)
    else:
        logging.basicConfig(level=logging.WARNING)
        
    logging.info("Welcome!")

    r = pivot_query_as_matrix(facet=args.facet,
                              fq=args.fq,
                              facet_pivot_fields=args.pivot,
                              url=args.url,
                              is_go=args.legacy_solr,
                              **args.qargs)

    print(str(r))
    trace = go.Heatmap(z=r['z'],
                       x=r['xaxis'],
                       y=r['yaxis'])
    data=[trace]
    py.plot(data, filename='pivot-heatmap') 
開發者ID:biolink,項目名稱:ontobio,代碼行數:58,代碼來源:biogolr-pivot.py

示例14: _update_spatial_unit

# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Heatmap [as 別名]
def _update_spatial_unit(self, uid, rely1, rely2, rely3, rely4, rely5,
                             state):
        print('update_spatial_unit')
        _initial = False
        _update = False
        if not state:
            _initial = True
        elif not state['data'][0]['customdata'] == uid:
            _update = True
        if _initial or _update:
            cur_A = self.cnmf['A'].sel(unit_id=uid if not uid is None else [])
            trace = [
                go.Heatmap(
                    x=cur_A.coords['width'].values,
                    y=cur_A.coords['height'].values,
                    z=cur_A.values,
                    colorscale='Viridis',
                    colorbar=dict(x=1),
                    hoverinfo='none',
                    customdata=uid)
            ]
            if _update:
                state.update(data=trace)
        if _initial:
            layout = go.Layout(
                title="Spatial Component of unit: {}".format(uid),
                xaxis=dict(
                    title='width',
                    range=[0, self._w],
                    showgrid=False,
                    zeroline=False,
                    showline=True,
                    constrain='domain',
                    constraintoward='right'),
                yaxis=dict(
                    title='height',
                    range=[0, self._h],
                    scaleanchor='x',
                    showgrid=False,
                    zeroline=False,
                    showline=True,
                    constrain='domain',
                    constraintoward='top'))
            state = go.Figure(data=trace, layout=layout)
        elif _update:
            state['layout']['title'] = "Spatial Component of unit: {}".format(uid)
        state = self._sync_zoom([rely1, rely2, rely3, rely4, rely5], state)
        return state 
開發者ID:DeniseCaiLab,項目名稱:minian,代碼行數:50,代碼來源:visualization_ply.py

示例15: _update_movies_Y

# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Heatmap [as 別名]
def _update_movies_Y(self, sig_mov, rely1, rely2, rely3, rely4, rely5,
                         state):
        print('update movie Y')
        sig_mov = json.loads(sig_mov)
        _initial = False
        _update = False
        if state:
            if not state['data'][0]['customdata'] == sig_mov:
                _update = True
        else:
            _initial = True
        if _initial or _update:
            print("updating Y trace")
            ts = time()
            trace = [
                go.Heatmap(
                    x=self.cur_Y.coords['width'].values,
                    y=self.cur_Y.coords['height'].values,
                    z=self.cur_Y.values,
                    colorscale='Viridis',
                    colorbar=dict(x=1),
                    customdata=sig_mov,
                    hoverinfo='none')
            ]
            print("time spent in generating Y trace: {}".format(time() - ts))
            if _update:
                state.update(data=trace)
        if _initial:
            layout = go.Layout(
                title="Y (Original) at frame: {}".format(sig_mov['f']),
                xaxis=dict(
                    title='width',
                    range=[0, self._w],
                    showgrid=False,
                    zeroline=False,
                    showline=True,
                    constrain='domain',
                    constraintoward='right'),
                yaxis=dict(
                    title='height',
                    range=[0, self._h],
                    scaleanchor='x',
                    showgrid=False,
                    zeroline=False,
                    showline=True,
                    constrain='domain',
                    constraintoward='top'))
            state = go.Figure(data=trace, layout=layout)
        elif _update:
            state['layout']['title'] = "Y (Original) at frame: {}".format(
                sig_mov['f'])
        state = self._sync_zoom([rely1, rely2, rely3, rely4, rely5], state)
        return state 
開發者ID:DeniseCaiLab,項目名稱:minian,代碼行數:55,代碼來源:visualization_ply.py


注:本文中的plotly.graph_objs.Heatmap方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。