本文整理匯總了Python中plotly.graph_objs.Figure方法的典型用法代碼示例。如果您正苦於以下問題:Python graph_objs.Figure方法的具體用法?Python graph_objs.Figure怎麽用?Python graph_objs.Figure使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類plotly.graph_objs
的用法示例。
在下文中一共展示了graph_objs.Figure方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plotly_histogram
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Figure [as 別名]
def plotly_histogram(array, color="#4CB391", title=None, xlabel=None, ylabel=None):
data = [go.Histogram(x=array,
opacity=0.4,
marker=dict(color=color))]
html = plotly.offline.plot(
{"data": data,
"layout": go.Layout(barmode='overlay',
title=title,
yaxis_title=ylabel,
xaxis_title=xlabel)},
output_type="div",
show_link=False)
fig = go.Figure(
{"data": data,
"layout": go.Layout(barmode='overlay',
title=title)})
return html, fig
示例2: plot_mean_sr
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Figure [as 別名]
def plot_mean_sr(sr_list, time_sr, title, y_title, x_title):
'''Plot a list of series using its mean, with error bar using std'''
mean_sr, std_sr = util.calc_srs_mean_std(sr_list)
max_sr = mean_sr + std_sr
min_sr = mean_sr - std_sr
max_y = max_sr.tolist()
min_y = min_sr.tolist()
x = time_sr.tolist()
color = get_palette(1)[0]
main_trace = go.Scatter(
x=x, y=mean_sr, mode='lines', showlegend=False,
line={'color': color, 'width': 1},
)
envelope_trace = go.Scatter(
x=x + x[::-1], y=max_y + min_y[::-1], showlegend=False,
line={'color': 'rgba(0, 0, 0, 0)'},
fill='tozerox', fillcolor=lower_opacity(color, 0.2),
)
data = [main_trace, envelope_trace]
layout = create_layout(title=title, y_title=y_title, x_title=x_title)
fig = go.Figure(data, layout)
return fig
示例3: generate_chart
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Figure [as 別名]
def generate_chart(self, _):
try:
import plotly
import plotly.graph_objs as go
data = [[0, 0, 0], [0, 0, 0]]
ok, viol = self.results.get_ok_viol()
x = ["OK (%d)" % ok, "Tampering (%d)" % viol]
for ret in self.results:
i = 1 if ret.is_tampering() else 0
data[i][0] += ret.is_aligned()
data[i][1] += ret.is_disaligned()
data[i][2] += ret.is_single()
final_data = [go.Bar(x=x, y=[x[0] for x in data], name="Aligned"), go.Bar(x=x, y=[x[1] for x in data], name="Disaligned"), go.Bar(x=x, y=[x[2] for x in data], name="Single")]
fig = go.Figure(data=final_data, layout=go.Layout(barmode='group', title='Call stack tampering labels'))
plotly.offline.plot(fig, output_type='file', include_plotlyjs=True, auto_open=True)
except ImportError:
self.log("ERROR", "Plotly module not available")
示例4: __init__
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Figure [as 別名]
def __init__(self, plotlyfig, colormap=None, pythonValue=None, **kwargs):
'''
Create a table object
Parameters
----------
plotlyfig : plotly.Figure
The plotly figure to encapsulate
colormap : ColorMap, optional
A pygsti color map object used for this figure.
pythonValue : object, optional
A python object to be used as the Python-version of
this figure (usually the data being plotted in some
convenient format).
kwargs : dict
Additional meta-data relevant to this figure
'''
self.plotlyfig = plotlyfig
self.colormap = colormap
self.pythonvalue = pythonValue
self.metadata = dict(kwargs).copy()
示例5: draw_table
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Figure [as 別名]
def draw_table(self, width=None, height=None, title=None, keep_ui_state=True, **kwargs):
cols = self.main_data.data_df.index.names + self.main_data.data_df.columns.tolist()
index1 = self.main_data.data_df.index.get_level_values(0).tolist()
index2 = self.main_data.data_df.index.get_level_values(1).tolist()
values = [index1] + [index2] + [self.main_data.data_df[col] for col in self.main_data.data_df.columns]
data = go.Table(
header=dict(values=cols,
fill_color=['#000080', '#000080'] + ['#0066cc'] * len(self.main_data.data_df.columns),
align='left',
font=dict(color='white', size=13)),
cells=dict(values=values, fill=dict(color='#F5F8FF'), align='left'), **kwargs)
fig = go.Figure()
fig.add_traces([data])
fig.update_layout(self.gen_plotly_layout(width=width, height=height, title=title, keep_ui_state=keep_ui_state))
fig.show()
示例6: custom_plot
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Figure [as 別名]
def custom_plot(data: Any, layout: Any, return_figure=True) -> "plotly.Figure":
"""A custom plotly plot where the data and layout are pre-specified
Parameters
----------
data : Any
Plotly data block
layout : Any
Plotly layout block
return_figure : bool, optional
Returns the raw plotly figure or not
"""
check_plotly()
import plotly.graph_objs as go
figure = go.Figure(data=data, layout=layout)
return _configure_return(figure, "qcportal-bar", return_figure)
示例7: observation_plan
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Figure [as 別名]
def observation_plan(target, facility, length=7, interval=60, airmass_limit=None):
"""
Displays form and renders plot for visibility calculation. Using this templatetag to render a plot requires that
the context of the parent view have values for start_time, end_time, and airmass.
"""
visibility_graph = ''
start_time = datetime.now()
end_time = start_time + timedelta(days=length)
visibility_data = get_sidereal_visibility(target, start_time, end_time, interval, airmass_limit)
plot_data = [
go.Scatter(x=data[0], y=data[1], mode='lines', name=site) for site, data in visibility_data.items()
]
layout = go.Layout(yaxis=dict(autorange='reversed'))
visibility_graph = offline.plot(
go.Figure(data=plot_data, layout=layout), output_type='div', show_link=False
)
return {
'visibility_graph': visibility_graph
}
示例8: _draw_scatter
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Figure [as 別名]
def _draw_scatter(all_vocabs, all_freqs, output_prefix):
colors = [(s and t) and (s < t and s / t or t / s) or 0
for s, t in all_freqs]
colors = [c and np.log(c) or 0 for c in colors]
trace = go.Scattergl(
x=[s for s, t in all_freqs],
y=[t for s, t in all_freqs],
mode='markers',
text=all_vocabs,
marker=dict(color=colors, showscale=True, colorscale='Viridis'))
layout = go.Layout(
title='Scatter plot of shared tokens',
hovermode='closest',
xaxis=dict(title='src freq', type='log', autorange=True),
yaxis=dict(title='trg freq', type='log', autorange=True))
fig = go.Figure(data=[trace], layout=layout)
py.plot(
fig, filename='{}_scatter.html'.format(output_prefix), auto_open=False)
示例9: test_generate_group_bar_charts
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Figure [as 別名]
def test_generate_group_bar_charts(self, mock_py):
x_values = [
[5.10114882, 5.0194652482, 4.9908093076],
[4.5824497358, 4.7083614037, 4.3812775722],
[2.6839471308, 3.0441476209, 3.6403820447]
]
y_values = ['#kubuntu-devel', '#ubuntu-devel', '#kubuntu']
trace_headers = ['head1', 'head2', 'head3']
test_data = [
go.Bar(
x=x_values,
y=y_values[i],
name=trace_headers[i]
) for i in range(len(y_values))
]
layout = go.Layout(barmode='group')
fig = go.Figure(data=test_data, layout=layout)
vis.generate_group_bar_charts(y_values, x_values, trace_headers, self.test_data_dir, 'test_group_bar_chart')
self.assertEqual(mock_py.call_count, 1)
self.assertEqual(fig.get('data')[0], mock_py.call_args[0][0].get('data')[0])
示例10: get_figure3d
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Figure [as 別名]
def get_figure3d(points3d, gt=None, range_scale=1):
"""Yields plotly fig for visualization"""
traces = get_trace3d(points3d, BLUE, BLUE, "prediction")
if gt is not None:
traces += get_trace3d(gt, RED, RED, "groundtruth")
layout = go.Layout(
scene=dict(
aspectratio=dict(x=0.8,
y=0.8,
z=2),
xaxis=dict(range=(-0.4 * range_scale, 0.4 * range_scale),),
yaxis=dict(range=(-0.4 * range_scale, 0.4 * range_scale),),
zaxis=dict(range=(-1 * range_scale, 1 * range_scale),),),
width=700,
margin=dict(r=20, l=10, b=10, t=10))
return go.Figure(data=traces, layout=layout)
示例11: heating_reset_schedule
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Figure [as 別名]
def heating_reset_schedule(data_frame, analysis_fields, title, output_path):
# CREATE FIRST PAGE WITH TIMESERIES
traces = []
x = data_frame["T_ext_C"].values
data_frame = data_frame.replace(0, np.nan)
for field in analysis_fields:
y = data_frame[field].values
name = NAMING[field]
trace = go.Scattergl(x=x, y=y, name=name, mode='markers',
marker=dict(color=COLOR[field]))
traces.append(trace)
layout = go.Layout(images=LOGO, title=title,
xaxis=dict(title='Outdoor Temperature [C]'),
yaxis=dict(title='HVAC System Temperature [C]'))
fig = go.Figure(data=traces, layout=layout)
plot(fig, auto_open=False, filename=output_path)
return {'data': traces, 'layout': layout}
示例12: peak_load_building
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Figure [as 別名]
def peak_load_building(data_frame, analysis_fields, title, output_path):
# CREATE FIRST PAGE WITH TIMESERIES
traces = []
area = data_frame["GFA_m2"]
data_frame = data_frame[analysis_fields]
x = ["Absolute [kW] ", "Relative [W/m2]"]
for field in analysis_fields:
y = [data_frame[field], data_frame[field] / area * 1000]
name = NAMING[field]
trace = go.Bar(x=x, y=y, name=name,
marker=dict(color=COLOR[field]))
traces.append(trace)
layout = go.Layout(images=LOGO, title=title, barmode='group', yaxis=dict(title='Peak Load'), showlegend=True)
fig = go.Figure(data=traces, layout=layout)
plot(fig, auto_open=False, filename=output_path)
return {'data': traces, 'layout': layout}
示例13: peak_load_district
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Figure [as 別名]
def peak_load_district(data_frame_totals, analysis_fields, title, output_path):
traces = []
data_frame_totals['total'] = data_frame_totals[analysis_fields].sum(axis=1)
data_frame_totals = data_frame_totals.sort_values(by='total',
ascending=False) # this will get the maximum value to the left
for field in analysis_fields:
y = data_frame_totals[field]
total_perc = (y / data_frame_totals['total'] * 100).round(2).values
total_perc_txt = ["(" + str(x) + " %)" for x in total_perc]
name = NAMING[field]
trace = go.Bar(x=data_frame_totals["Name"], y=y, name=name,
marker=dict(color=COLOR[field]))
traces.append(trace)
layout = go.Layout(title=title, barmode='group', yaxis=dict(title='Peak Load [kW]'), showlegend=True)
fig = go.Figure(data=traces, layout=layout)
plot(fig, auto_open=False, filename=output_path)
return {'data': traces, 'layout': layout}
示例14: energy_use_intensity_district
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Figure [as 別名]
def energy_use_intensity_district(data_frame, analysis_fields, title, output_path):
traces = []
data_frame_copy = data_frame.copy() # make a copy to avoid passing new data of the dataframe around the class
for field in analysis_fields:
data_frame_copy[field] = data_frame_copy[field] * 1000 / data_frame_copy["GFA_m2"] # in kWh/m2y
data_frame_copy['total'] = data_frame_copy[analysis_fields].sum(axis=1)
data_frame_copy = data_frame_copy.sort_values(by='total',
ascending=False) # this will get the maximum value to the left
x = data_frame_copy["Name"].tolist()
for field in analysis_fields:
y = data_frame_copy[field]
name = NAMING[field]
trace = go.Bar(x=x, y=y, name=name, marker=dict(color=COLOR[field]))
traces.append(trace)
layout = go.Layout(images=LOGO, title=title, barmode='stack', yaxis=dict(title='Energy Use Intensity [kWh/m2.yr]'),
showlegend=True)
fig = go.Figure(data=traces, layout=layout)
plot(fig, auto_open=False, filename=output_path)
return {'data': traces, 'layout': layout}
示例15: load_duration_curve
# 需要導入模塊: from plotly import graph_objs [as 別名]
# 或者: from plotly.graph_objs import Figure [as 別名]
def load_duration_curve(data_frame, analysis_fields, title, output_path):
# CALCULATE GRAPH
traces_graph = calc_graph(analysis_fields, data_frame)
# CALCULATE TABLE
traces_table = calc_table(analysis_fields, data_frame)
# PLOT GRAPH
traces_graph.append(traces_table)
layout = go.Layout(images=LOGO, title=title, xaxis=dict(title='Duration Normalized [%]', domain=[0, 1]),
yaxis=dict(title='Load [kW]', domain=[0.0, 0.7]), showlegend=True)
fig = go.Figure(data=traces_graph, layout=layout)
plot(fig, auto_open=False, filename=output_path)
return {'data': traces_graph, 'layout': layout}