當前位置: 首頁>>代碼示例>>Python>>正文


Python pickle._Unpickler方法代碼示例

本文整理匯總了Python中pickle._Unpickler方法的典型用法代碼示例。如果您正苦於以下問題:Python pickle._Unpickler方法的具體用法?Python pickle._Unpickler怎麽用?Python pickle._Unpickler使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pickle的用法示例。


在下文中一共展示了pickle._Unpickler方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _get_non_pickle_io

# 需要導入模塊: import pickle [as 別名]
# 或者: from pickle import _Unpickler [as 別名]
def _get_non_pickle_io(self, obj):
        """
        Checks if obj has non-Pickle IO and returns it

        :param obj: object to check
        :return: non-Pickle :class:`ModelIO` instance or None
        """

        # avoid calling heavy analyzer machinery for "unknown" objects:
        # they are either non-models or callables
        if not isinstance(obj, self.known_types):
            return None

        # we couldn't import analyzer at top as it leads to circular import failure
        from ebonite.core.analyzer.model import ModelAnalyzer
        try:
            io = ModelAnalyzer._find_hook(obj)._wrapper_factory().io
            return None if isinstance(io, PickleModelIO) else io
        except ValueError:
            # non-model object
            return None


# We couldn't use `EboniteUnpickler` here as it (in fact `dill`) subclasses `Unpickler`
# `Unpickler`, unlike `_Unpickler`, doesn't support `load_build` overriding 
開發者ID:zyfra,項目名稱:ebonite,代碼行數:27,代碼來源:wrapper.py

示例2: _unpickle_from_path

# 需要導入模塊: import pickle [as 別名]
# 或者: from pickle import _Unpickler [as 別名]
def _unpickle_from_path(path):
    # Oh... the joys of Py2 vs Py3
    with open(path, 'rb') as f:
        if sys.version_info[0] == 2:
            return pickle.load(f)
        else:
            u = pickle._Unpickler(f)
            u.encoding = 'latin1'
            return u.load()




#
#
# CUSTOM RESNET CLASS
#
# 
開發者ID:Britefury,項目名稱:self-ensemble-visual-domain-adapt-photo,代碼行數:20,代碼來源:network_architectures.py

示例3: read_bin_file

# 需要導入模塊: import pickle [as 別名]
# 或者: from pickle import _Unpickler [as 別名]
def read_bin_file(fname):
    with open(fname, 'rb') as f:
        u = pkl._Unpickler(f)
        u.encoding = 'latin1'
        return u.load() 
開發者ID:jiacheng-xu,項目名稱:vmf_vae_nlp,代碼行數:7,代碼來源:helper.py

示例4: load_data

# 需要導入模塊: import pickle [as 別名]
# 或者: from pickle import _Unpickler [as 別名]
def load_data(file):
    try:
        with open(file, 'rb') as fo:
            data = pickle.load(fo)
        return data
    except:
        with open(file, 'rb') as f:
            u = pickle._Unpickler(f)
            u.encoding = 'latin1'
            data = u.load()
        return data 
開發者ID:kjunelee,項目名稱:MetaOptNet,代碼行數:13,代碼來源:tiered_imagenet.py

示例5: __init__

# 需要導入模塊: import pickle [as 別名]
# 或者: from pickle import _Unpickler [as 別名]
def __init__(self, root, train=True,transform=None, download=False):
        self.root = os.path.expanduser(root)
        self.transform = transform
        self.filename = "facescrub_100.zip"
        self.url = "https://github.com/nkundiushuti/facescrub_subset/blob/master/data/facescrub_100.zip?raw=true"

        fpath=os.path.join(root,self.filename)
        if not os.path.isfile(fpath):
            if not download:
               raise RuntimeError('Dataset not found. You can use download=True to download it')
            else:
                print('Downloading from '+self.url)
                self.download()

        training_file = 'facescrub_train_100.pkl'
        testing_file = 'facescrub_test_100.pkl'
        if train:
            with open(os.path.join(root,training_file),'rb') as f:
                # u = pickle._Unpickler(f)
                # u.encoding = 'latin1'
                # train  = u.load()
                train = pickle.load(f)
            self.data = train['features'].astype(np.uint8)
            self.labels = train['labels'].astype(np.uint8)
            """
            print(self.data.shape)
            print(self.data.mean())
            print(self.data.std())
            print(self.labels.max())
            #"""
        else:
            with open(os.path.join(root,testing_file),'rb') as f:
                # u = pickle._Unpickler(f)
                # u.encoding = 'latin1'
                # test  = u.load()
                test = pickle.load(f)

            self.data = test['features'].astype(np.uint8)
            self.labels = test['labels'].astype(np.uint8) 
開發者ID:SaynaEbrahimi,項目名稱:UCB,代碼行數:41,代碼來源:mixture.py

示例6: pickle_loader

# 需要導入模塊: import pickle [as 別名]
# 或者: from pickle import _Unpickler [as 別名]
def pickle_loader(file_path, gz=False):
    open_fct = open
    if gz:
        open_fct = gzip.open

    with open_fct(file_path, "rb") as f:
        if sys.version_info > (3, 0):  # Workaround to load pickle data python2 -> python3
            u = pickle._Unpickler(f)
            u.encoding = 'latin1'
            return u.load()
        else:
            return pickle.load(f) 
開發者ID:ap229997,項目名稱:Conditional-Batch-Norm,代碼行數:14,代碼來源:file_handlers.py

示例7: unpickle

# 需要導入模塊: import pickle [as 別名]
# 或者: from pickle import _Unpickler [as 別名]
def unpickle(file):
    with open(file, 'rb') as fo:
        u = pickle._Unpickler(fo)
        u.encoding = 'latin1'
        dict = u.load()
    return dict 
開發者ID:wy1iu,項目名稱:MHE,代碼行數:8,代碼來源:train.py

示例8: read_pkl_coding

# 需要導入模塊: import pickle [as 別名]
# 或者: from pickle import _Unpickler [as 別名]
def read_pkl_coding(name = '../data/info.pkl'):
    with open(name, 'rb') as f:
        u = pickle._Unpickler(f)
        u.encoding = 'latin1'
        p = u.load()
    return p 
開發者ID:JDAI-CV,項目名稱:DSD-SATN,代碼行數:8,代碼來源:util.py

示例9: _load_data

# 需要導入模塊: import pickle [as 別名]
# 或者: from pickle import _Unpickler [as 別名]
def _load_data(self):
        script_dir = os.path.dirname(__file__)
        mnist_file = os.path.join(os.path.join(script_dir, 'data'), 'mnist.pkl.gz')

        with gzip.open(mnist_file, 'rb') as mnist_file:
            u = pickle._Unpickler(mnist_file)
            u.encoding = 'latin1'
            train, val, test = u.load()
        return train, val, test 
開發者ID:upul,項目名稱:Aurora,代碼行數:11,代碼來源:mnist.py

示例10: __init__

# 需要導入模塊: import pickle [as 別名]
# 或者: from pickle import _Unpickler [as 別名]
def __init__(self,
                 root,
                 mode='train',
                 transform=None,
                 target_transform=None,
                 download=False):
        super(FC100, self).__init__()
        self.root = os.path.expanduser(root)
        os.makedirs(self.root, exist_ok=True)
        self.transform = transform
        self.target_transform = target_transform
        if mode not in ['train', 'validation', 'test']:
            raise ValueError('mode must be train, validation, or test.')
        self.mode = mode
        self._bookkeeping_path = os.path.join(self.root, 'fc100-bookkeeping-' + mode + '.pkl')

        if not self._check_exists() and download:
            self.download()

        short_mode = 'val' if mode == 'validation' else mode
        fc100_path = os.path.join(self.root, 'FC100_' + short_mode + '.pickle')
        with open(fc100_path, 'rb') as f:
            u = pickle._Unpickler(f)
            u.encoding = 'latin1'
            archive = u.load()
        self.images = archive['data']
        self.labels = archive['labels'] 
開發者ID:learnables,項目名稱:learn2learn,代碼行數:29,代碼來源:fc100.py

示例11: load_data

# 需要導入模塊: import pickle [as 別名]
# 或者: from pickle import _Unpickler [as 別名]
def load_data(self, file_name):
        with open(file_name, 'rb') as file:
            unpickler = pickle._Unpickler(file)
            unpickler.encoding = 'latin1'
            contents = unpickler.load()
            X, Y = np.asarray(contents['data'], dtype=np.float32), np.asarray(contents['labels'])
            one_hot = np.zeros((Y.size, Y.max() + 1))
            one_hot[np.arange(Y.size), Y] = 1
            return X, one_hot 
開發者ID:Neoanarika,項目名稱:Searching-for-activation-functions,代碼行數:11,代碼來源:dataset.py

示例12: load_data

# 需要導入模塊: import pickle [as 別名]
# 或者: from pickle import _Unpickler [as 別名]
def load_data(dataset):
    # load the data: x, tx, allx, graph
    names = ['x', 'tx', 'allx', 'graph']
    objects = []
    for i in range(len(names)):
        '''
        fix Pickle incompatibility of numpy arrays between Python 2 and 3
        https://stackoverflow.com/questions/11305790/pickle-incompatibility-of-numpy-arrays-between-python-2-and-3
        '''
        with open("data/ind.{}.{}".format(dataset, names[i]), 'rb') as rf:
            u = pkl._Unpickler(rf)
            u.encoding = 'latin1'
            cur_data = u.load()
            objects.append(cur_data)
        # objects.append(
        #     pkl.load(open("data/ind.{}.{}".format(dataset, names[i]), 'rb')))
    x, tx, allx, graph = tuple(objects)
    test_idx_reorder = parse_index_file(
        "data/ind.{}.test.index".format(dataset))
    test_idx_range = np.sort(test_idx_reorder)

    if dataset == 'citeseer':
        # Fix citeseer dataset (there are some isolated nodes in the graph)
        # Find isolated nodes, add them as zero-vecs into the right position
        test_idx_range_full = range(
            min(test_idx_reorder), max(test_idx_reorder) + 1)
        tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
        tx_extended[test_idx_range - min(test_idx_range), :] = tx
        tx = tx_extended

    features = sp.vstack((allx, tx)).tolil()
    features[test_idx_reorder, :] = features[test_idx_range, :]
    features = torch.FloatTensor(np.array(features.todense()))
    adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph))

    return adj, features 
開發者ID:zfjsail,項目名稱:gae-pytorch,代碼行數:38,代碼來源:utils.py

示例13: _load_mnist

# 需要導入模塊: import pickle [as 別名]
# 或者: from pickle import _Unpickler [as 別名]
def _load_mnist():
    data_dir = os.path.dirname(os.path.abspath(__file__))
    data_file = os.path.join(data_dir, "mnist.pkl.gz")

    print("Looking for data file: ", data_file)

    if not os.path.isfile(data_file):
        import urllib.request as url
        origin = 'http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz'
        print('Downloading data from: ', origin)
        url.urlretrieve(origin, data_file)

    print('Loading MNIST data')
    f = gzip.open(data_file, 'rb')
    u = pickle._Unpickler(f)
    u.encoding = 'latin1'
    train_set, valid_set, test_set = u.load()
    f.close()


    train_x, train_y = train_set
    valid_x, valid_y = valid_set
    testing_x, testing_y = test_set

    training_x = np.vstack((train_x, valid_x))
    training_y = np.concatenate((train_y, valid_y))

    training_x = training_x.reshape((training_x.shape[0], 1, 28, 28))
    testing_x = testing_x.reshape((testing_x.shape[0], 1, 28, 28))

    return training_x, training_y, testing_x, testing_y 
開發者ID:rakeshvar,項目名稱:theanet,代碼行數:33,代碼來源:mnist.py


注:本文中的pickle._Unpickler方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。