本文整理匯總了Python中pickle._Unpickler方法的典型用法代碼示例。如果您正苦於以下問題:Python pickle._Unpickler方法的具體用法?Python pickle._Unpickler怎麽用?Python pickle._Unpickler使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pickle
的用法示例。
在下文中一共展示了pickle._Unpickler方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _get_non_pickle_io
# 需要導入模塊: import pickle [as 別名]
# 或者: from pickle import _Unpickler [as 別名]
def _get_non_pickle_io(self, obj):
"""
Checks if obj has non-Pickle IO and returns it
:param obj: object to check
:return: non-Pickle :class:`ModelIO` instance or None
"""
# avoid calling heavy analyzer machinery for "unknown" objects:
# they are either non-models or callables
if not isinstance(obj, self.known_types):
return None
# we couldn't import analyzer at top as it leads to circular import failure
from ebonite.core.analyzer.model import ModelAnalyzer
try:
io = ModelAnalyzer._find_hook(obj)._wrapper_factory().io
return None if isinstance(io, PickleModelIO) else io
except ValueError:
# non-model object
return None
# We couldn't use `EboniteUnpickler` here as it (in fact `dill`) subclasses `Unpickler`
# `Unpickler`, unlike `_Unpickler`, doesn't support `load_build` overriding
示例2: _unpickle_from_path
# 需要導入模塊: import pickle [as 別名]
# 或者: from pickle import _Unpickler [as 別名]
def _unpickle_from_path(path):
# Oh... the joys of Py2 vs Py3
with open(path, 'rb') as f:
if sys.version_info[0] == 2:
return pickle.load(f)
else:
u = pickle._Unpickler(f)
u.encoding = 'latin1'
return u.load()
#
#
# CUSTOM RESNET CLASS
#
#
示例3: read_bin_file
# 需要導入模塊: import pickle [as 別名]
# 或者: from pickle import _Unpickler [as 別名]
def read_bin_file(fname):
with open(fname, 'rb') as f:
u = pkl._Unpickler(f)
u.encoding = 'latin1'
return u.load()
示例4: load_data
# 需要導入模塊: import pickle [as 別名]
# 或者: from pickle import _Unpickler [as 別名]
def load_data(file):
try:
with open(file, 'rb') as fo:
data = pickle.load(fo)
return data
except:
with open(file, 'rb') as f:
u = pickle._Unpickler(f)
u.encoding = 'latin1'
data = u.load()
return data
示例5: __init__
# 需要導入模塊: import pickle [as 別名]
# 或者: from pickle import _Unpickler [as 別名]
def __init__(self, root, train=True,transform=None, download=False):
self.root = os.path.expanduser(root)
self.transform = transform
self.filename = "facescrub_100.zip"
self.url = "https://github.com/nkundiushuti/facescrub_subset/blob/master/data/facescrub_100.zip?raw=true"
fpath=os.path.join(root,self.filename)
if not os.path.isfile(fpath):
if not download:
raise RuntimeError('Dataset not found. You can use download=True to download it')
else:
print('Downloading from '+self.url)
self.download()
training_file = 'facescrub_train_100.pkl'
testing_file = 'facescrub_test_100.pkl'
if train:
with open(os.path.join(root,training_file),'rb') as f:
# u = pickle._Unpickler(f)
# u.encoding = 'latin1'
# train = u.load()
train = pickle.load(f)
self.data = train['features'].astype(np.uint8)
self.labels = train['labels'].astype(np.uint8)
"""
print(self.data.shape)
print(self.data.mean())
print(self.data.std())
print(self.labels.max())
#"""
else:
with open(os.path.join(root,testing_file),'rb') as f:
# u = pickle._Unpickler(f)
# u.encoding = 'latin1'
# test = u.load()
test = pickle.load(f)
self.data = test['features'].astype(np.uint8)
self.labels = test['labels'].astype(np.uint8)
示例6: pickle_loader
# 需要導入模塊: import pickle [as 別名]
# 或者: from pickle import _Unpickler [as 別名]
def pickle_loader(file_path, gz=False):
open_fct = open
if gz:
open_fct = gzip.open
with open_fct(file_path, "rb") as f:
if sys.version_info > (3, 0): # Workaround to load pickle data python2 -> python3
u = pickle._Unpickler(f)
u.encoding = 'latin1'
return u.load()
else:
return pickle.load(f)
示例7: unpickle
# 需要導入模塊: import pickle [as 別名]
# 或者: from pickle import _Unpickler [as 別名]
def unpickle(file):
with open(file, 'rb') as fo:
u = pickle._Unpickler(fo)
u.encoding = 'latin1'
dict = u.load()
return dict
示例8: read_pkl_coding
# 需要導入模塊: import pickle [as 別名]
# 或者: from pickle import _Unpickler [as 別名]
def read_pkl_coding(name = '../data/info.pkl'):
with open(name, 'rb') as f:
u = pickle._Unpickler(f)
u.encoding = 'latin1'
p = u.load()
return p
示例9: _load_data
# 需要導入模塊: import pickle [as 別名]
# 或者: from pickle import _Unpickler [as 別名]
def _load_data(self):
script_dir = os.path.dirname(__file__)
mnist_file = os.path.join(os.path.join(script_dir, 'data'), 'mnist.pkl.gz')
with gzip.open(mnist_file, 'rb') as mnist_file:
u = pickle._Unpickler(mnist_file)
u.encoding = 'latin1'
train, val, test = u.load()
return train, val, test
示例10: __init__
# 需要導入模塊: import pickle [as 別名]
# 或者: from pickle import _Unpickler [as 別名]
def __init__(self,
root,
mode='train',
transform=None,
target_transform=None,
download=False):
super(FC100, self).__init__()
self.root = os.path.expanduser(root)
os.makedirs(self.root, exist_ok=True)
self.transform = transform
self.target_transform = target_transform
if mode not in ['train', 'validation', 'test']:
raise ValueError('mode must be train, validation, or test.')
self.mode = mode
self._bookkeeping_path = os.path.join(self.root, 'fc100-bookkeeping-' + mode + '.pkl')
if not self._check_exists() and download:
self.download()
short_mode = 'val' if mode == 'validation' else mode
fc100_path = os.path.join(self.root, 'FC100_' + short_mode + '.pickle')
with open(fc100_path, 'rb') as f:
u = pickle._Unpickler(f)
u.encoding = 'latin1'
archive = u.load()
self.images = archive['data']
self.labels = archive['labels']
示例11: load_data
# 需要導入模塊: import pickle [as 別名]
# 或者: from pickle import _Unpickler [as 別名]
def load_data(self, file_name):
with open(file_name, 'rb') as file:
unpickler = pickle._Unpickler(file)
unpickler.encoding = 'latin1'
contents = unpickler.load()
X, Y = np.asarray(contents['data'], dtype=np.float32), np.asarray(contents['labels'])
one_hot = np.zeros((Y.size, Y.max() + 1))
one_hot[np.arange(Y.size), Y] = 1
return X, one_hot
示例12: load_data
# 需要導入模塊: import pickle [as 別名]
# 或者: from pickle import _Unpickler [as 別名]
def load_data(dataset):
# load the data: x, tx, allx, graph
names = ['x', 'tx', 'allx', 'graph']
objects = []
for i in range(len(names)):
'''
fix Pickle incompatibility of numpy arrays between Python 2 and 3
https://stackoverflow.com/questions/11305790/pickle-incompatibility-of-numpy-arrays-between-python-2-and-3
'''
with open("data/ind.{}.{}".format(dataset, names[i]), 'rb') as rf:
u = pkl._Unpickler(rf)
u.encoding = 'latin1'
cur_data = u.load()
objects.append(cur_data)
# objects.append(
# pkl.load(open("data/ind.{}.{}".format(dataset, names[i]), 'rb')))
x, tx, allx, graph = tuple(objects)
test_idx_reorder = parse_index_file(
"data/ind.{}.test.index".format(dataset))
test_idx_range = np.sort(test_idx_reorder)
if dataset == 'citeseer':
# Fix citeseer dataset (there are some isolated nodes in the graph)
# Find isolated nodes, add them as zero-vecs into the right position
test_idx_range_full = range(
min(test_idx_reorder), max(test_idx_reorder) + 1)
tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
tx_extended[test_idx_range - min(test_idx_range), :] = tx
tx = tx_extended
features = sp.vstack((allx, tx)).tolil()
features[test_idx_reorder, :] = features[test_idx_range, :]
features = torch.FloatTensor(np.array(features.todense()))
adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph))
return adj, features
示例13: _load_mnist
# 需要導入模塊: import pickle [as 別名]
# 或者: from pickle import _Unpickler [as 別名]
def _load_mnist():
data_dir = os.path.dirname(os.path.abspath(__file__))
data_file = os.path.join(data_dir, "mnist.pkl.gz")
print("Looking for data file: ", data_file)
if not os.path.isfile(data_file):
import urllib.request as url
origin = 'http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz'
print('Downloading data from: ', origin)
url.urlretrieve(origin, data_file)
print('Loading MNIST data')
f = gzip.open(data_file, 'rb')
u = pickle._Unpickler(f)
u.encoding = 'latin1'
train_set, valid_set, test_set = u.load()
f.close()
train_x, train_y = train_set
valid_x, valid_y = valid_set
testing_x, testing_y = test_set
training_x = np.vstack((train_x, valid_x))
training_y = np.concatenate((train_y, valid_y))
training_x = training_x.reshape((training_x.shape[0], 1, 28, 28))
testing_x = testing_x.reshape((testing_x.shape[0], 1, 28, 28))
return training_x, training_y, testing_x, testing_y