本文整理匯總了Python中pathos.multiprocessing.ProcessingPool方法的典型用法代碼示例。如果您正苦於以下問題:Python multiprocessing.ProcessingPool方法的具體用法?Python multiprocessing.ProcessingPool怎麽用?Python multiprocessing.ProcessingPool使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pathos.multiprocessing
的用法示例。
在下文中一共展示了multiprocessing.ProcessingPool方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from pathos import multiprocessing [as 別名]
# 或者: from pathos.multiprocessing import ProcessingPool [as 別名]
def __init__(self, n_features, n_nodes, embedding_dim, rnn_dim, bidirectional=True,
sinkhorn_iters=5, sinkhorn_tau=1, num_workers=4, cuda=True):
super(SPGSequentialActor, self).__init__()
self.use_cuda = cuda
self.n_nodes = n_nodes
self.embedding_dim = embedding_dim
self.rnn_dim = rnn_dim
self.num_workers = num_workers
self.embedding = nn.Linear(n_features, embedding_dim)
self.gru = nn.GRU(embedding_dim, rnn_dim, bidirectional=bidirectional)
scale = 2 if bidirectional else 1
self.fc2 = nn.Linear(scale * self.rnn_dim, n_nodes)
self.sinkhorn = Sinkhorn(n_nodes, sinkhorn_iters, sinkhorn_tau)
self.round = linear_assignment
init_hx = torch.zeros(scale, self.rnn_dim)
if cuda:
init_hx = init_hx.cuda()
self.init_hx = Variable(init_hx, requires_grad=False)
if num_workers > 0:
self.pool = Pool(num_workers)
示例2: __init__
# 需要導入模塊: from pathos import multiprocessing [as 別名]
# 或者: from pathos.multiprocessing import ProcessingPool [as 別名]
def __init__(self, process):
self.size = process_count or mp.cpu_count()
self.process = process
self.phase=None
self.pool = mp.ProcessingPool(self.size)
示例3: __init__
# 需要導入模塊: from pathos import multiprocessing [as 別名]
# 或者: from pathos.multiprocessing import ProcessingPool [as 別名]
def __init__(self, process):
self.size = process_count or mp.cpu_count()
self.process = process
self.phase = None
self.pool = mp.ProcessingPool(self.size)
示例4: map
# 需要導入模塊: from pathos import multiprocessing [as 別名]
# 或者: from pathos.multiprocessing import ProcessingPool [as 別名]
def map(self, f, seq):
"""
Parallel implementation of map.
Parameters
----------
f : callable
A function to map to all the values in 'seq'
seq : iterable
An iterable of values to process with 'f'
Returns
-------
results : list, shape=[len(seq)]
The evaluated values
"""
if self.n_jobs < 1:
n_jobs = multiprocessing.cpu_count()
elif self.n_jobs == 1:
return list(map(f, seq))
else:
n_jobs = self.n_jobs
pool = Pool(n_jobs)
results = list(pool.map(f, seq))
# Closing/joining is not really allowed because pathos sees pools as
# lasting for the duration of the program.
return results
示例5: parallelExecute
# 需要導入模塊: from pathos import multiprocessing [as 別名]
# 或者: from pathos.multiprocessing import ProcessingPool [as 別名]
def parallelExecute(jobs):
if arguments.cores == 1:
return map(lambda j: invokeExecuteMethod(j, timeout = arguments.timeout), jobs)
else:
return Pool(arguments.cores).map(lambda j: invokeExecuteMethod(j,timeout = arguments.timeout),jobs)
# Loads all of the particles in the directory, up to the first 200
# Returns the top K as measured by a linear combination of image distance and neural network likelihood
示例6: parallelMap
# 需要導入模塊: from pathos import multiprocessing [as 別名]
# 或者: from pathos.multiprocessing import ProcessingPool [as 別名]
def parallelMap(numberOfCPUs, f, *xs):
from pathos.multiprocessing import ProcessingPool as Pool
numberOfCPUs = min(numberOfCPUs,len(zip(*xs)))
if numberOfCPUs == 1: return map(f,*xs)
def safeCall(x):
try:
y = f(*x)
return y
except Exception as e:
print "Exception in worker during parallel map:\n%s"%(traceback.format_exc())
raise e
return Pool(numberOfCPUs).map(safeCall,zip(*xs))
示例7: __init__
# 需要導入模塊: from pathos import multiprocessing [as 別名]
# 或者: from pathos.multiprocessing import ProcessingPool [as 別名]
def __init__(self, objective_function=None, dimensions=None, **kwargs):
# No dimensions argument passed
if dimensions is None:
try:
# Use the objective function's number of arguments as dimensions
dimensions = objective_function.__code__.co_argcount
except TypeError:
raise TypeError("Invalid function passed.")
# Construct PopulationParameters object
self.parameters = PopulationParameters(dimensions=dimensions, **kwargs)
self.objective_function = objective_function
self.elite_population_size = int(self.parameters.elite_fraction * self.parameters.population_size)
self.evaluated_fitness_ranks = False
self.evaluated_diversity_ranks = False
self.mean_fitness = 0
self.mean_diversity = 0
self.mean_coordinates = np.zeros((self.parameters.num_dimensions, 1))
self.num_iterations = 1
# Multiprocessing defaults
self.multiprocessing = kwargs.get('multiprocessing', False)
self.processes = kwargs.get('processes')
# Create points as Point objects
self.points = []
for pointnumber in range(self.parameters.population_size):
point = Point(associated_population=self, dimensions=self.parameters.num_dimensions)
self.points.append(point)
self.points[pointnumber].index = pointnumber
# If multiprocessing is enabled, create pool of processes.
if self.multiprocessing:
if self.processes is None:
self.pool = mp.ProcessingPool()
else:
self.pool = mp.ProcessingPool(ncpus=self.processes)
fitnesses = self.pool.map(lambda coordinates, func: func(*coordinates), [point.coordinates for point in self.points], [self.objective_function] * self.size)
# Assign fitnesses to each point
for index, point in enumerate(self.points):
point.fitness = fitnesses[index]
else:
for point in self.points:
point.evaluate_fitness(self.objective_function)
# Evaluate fitness and diversity ranks
self.__evaluate_fitness_ranks()
self.__evaluate_diversity_ranks()
# Evaluate the fitness rank of each point in the population
示例8: climByAveragingPeriods
# 需要導入模塊: from pathos import multiprocessing [as 別名]
# 或者: from pathos.multiprocessing import ProcessingPool [as 別名]
def climByAveragingPeriods(urls, # list of (daily) granule URLs for a long time period (e.g. a year)
nEpochs, # compute a climatology for every N epochs (days) by 'averaging'
nWindow, # number of epochs in window needed for averaging
variable, # name of primary variable in file
mask, # name of mask variable
coordinates, # names of coordinate arrays to read and pass on (e.g. 'lat' and 'lon')
maskFn=qcMask, # mask function to compute mask from mask variable
averager='pixelAverage', # averaging function to use, one of ['pixelAverage', 'gaussInterp']
mode='sequential', # Map across time periods of N-days for concurrent work, executed by:
# 'sequential' map, 'multicore' using pool.map(), 'cluster' using pathos pool.map(),
# or 'spark' using PySpark
numNodes=1, # number of cluster nodes to use
nWorkers=4, # number of parallel workers per node
averagingFunctions=AveragingFunctions, # dict of possible averaging functions
legalModes=ExecutionModes # list of possiblel execution modes
):
'''Compute a climatology every N days by applying a mask and averaging function.
Writes the averaged variable grid, attributes of the primary variable, and the coordinate arrays in a dictionary.
***Assumption: This routine assumes that the N grids will fit in memory.***
'''
try:
averageFn = averagingFunctions[averager]
except :
averageFn = average
print >>sys.stderr, 'climatology: Error, Averaging function must be one of: %s' % str(averagingFunctions)
urlSplits = [s for s in fixedSplit(urls, nEpochs)]
if VERBOSE: print >>sys.stderr, urlSplits
def climsContoured(urls):
n = len(urls)
var = climByAveraging(urls, variable, mask, coordinates, maskFn, averageFn)
return contourMap(var, variable, coordinates, n, urls[0])
if mode == 'sequential':
plots = map(climsContoured, urlSplits)
elif mode == 'multicore':
pool = Pool(nWorkers)
plots = pool.map(climsContoured, urlSplits)
elif mode == 'cluster':
pass
elif mode == 'spark':
pass
plots = map(climsContoured, urlSplits)
print plots
return plots
# return makeMovie(plots, 'clim.mpg')