當前位置: 首頁>>代碼示例>>Python>>正文


Python params.batch_size方法代碼示例

本文整理匯總了Python中params.batch_size方法的典型用法代碼示例。如果您正苦於以下問題:Python params.batch_size方法的具體用法?Python params.batch_size怎麽用?Python params.batch_size使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在params的用法示例。


在下文中一共展示了params.batch_size方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_usps

# 需要導入模塊: import params [as 別名]
# 或者: from params import batch_size [as 別名]
def get_usps(train):
    """Get USPS dataset loader."""
    # image pre-processing
    pre_process = transforms.Compose([transforms.ToTensor(),
                                      transforms.Normalize(
                                          mean=params.dataset_mean,
                                          std=params.dataset_std)])

    # dataset and data loader
    usps_dataset = USPS(root=params.data_root,
                        train=train,
                        transform=pre_process,
                        download=True)

    usps_data_loader = torch.utils.data.DataLoader(
        dataset=usps_dataset,
        batch_size=params.batch_size,
        shuffle=True)

    return usps_data_loader 
開發者ID:corenel,項目名稱:pytorch-adda,代碼行數:22,代碼來源:usps.py

示例2: get_mnist

# 需要導入模塊: import params [as 別名]
# 或者: from params import batch_size [as 別名]
def get_mnist(train):
    """Get MNIST dataset loader."""
    # image pre-processing
    pre_process = transforms.Compose([transforms.ToTensor(),
                                      transforms.Normalize(
                                          mean=params.dataset_mean,
                                          std=params.dataset_std)])

    # dataset and data loader
    mnist_dataset = datasets.MNIST(root=params.data_root,
                                   train=train,
                                   transform=pre_process,
                                   download=True)

    mnist_data_loader = torch.utils.data.DataLoader(
        dataset=mnist_dataset,
        batch_size=params.batch_size,
        shuffle=True)

    return mnist_data_loader 
開發者ID:corenel,項目名稱:pytorch-adda,代碼行數:22,代碼來源:mnist.py

示例3: valid_generator

# 需要導入模塊: import params [as 別名]
# 或者: from params import batch_size [as 別名]
def valid_generator():
    while True:
        for start in range(0, len(ids_valid_split), batch_size):
            x_batch = []
            y_batch = []
            end = min(start + batch_size, len(ids_valid_split))
            ids_valid_batch = ids_valid_split[start:end]
            for id in ids_valid_batch.values:
                img = cv2.imread('input/train/{}.jpg'.format(id))
                img = cv2.resize(img, (input_size, input_size))
                mask = cv2.imread('input/train_masks/{}_mask.png'.format(id), cv2.IMREAD_GRAYSCALE)
                mask = cv2.resize(mask, (input_size, input_size))
                mask = np.expand_dims(mask, axis=2)
                x_batch.append(img)
                y_batch.append(mask)
            x_batch = np.array(x_batch, np.float32) / 255
            y_batch = np.array(y_batch, np.float32) / 255
            yield x_batch, y_batch 
開發者ID:petrosgk,項目名稱:Kaggle-Carvana-Image-Masking-Challenge,代碼行數:20,代碼來源:train.py

示例4: data_loader

# 需要導入模塊: import params [as 別名]
# 或者: from params import batch_size [as 別名]
def data_loader(q, ):
    for start in tqdm(range(0, len(ids_test), batch_size)):
        x_batch = []
        end = min(start + batch_size, len(ids_test))
        ids_test_batch = ids_test[start:end]
        for id in ids_test_batch.values:
            img = cv2.imread('input/test/{}.jpg'.format(id))
            if input_size is not None:
                img = cv2.resize(img, (input_size, input_size))
            x_batch.append(img)
        x_batch = np.array(x_batch, np.float32) / 255
        q.put((ids_test_batch, x_batch))
    for g in gpus:
        q.put((None, None)) 
開發者ID:petrosgk,項目名稱:Kaggle-Carvana-Image-Masking-Challenge,代碼行數:16,代碼來源:test_submit_multi_gpu.py

示例5: data_loader

# 需要導入模塊: import params [as 別名]
# 或者: from params import batch_size [as 別名]
def data_loader(q, ):
    for start in range(0, len(ids_test), batch_size):
        x_batch = []
        end = min(start + batch_size, len(ids_test))
        ids_test_batch = ids_test[start:end]
        for id in ids_test_batch.values:
            img = cv2.imread('input/test/{}.jpg'.format(id))
            img = cv2.resize(img, (input_size, input_size))
            x_batch.append(img)
        x_batch = np.array(x_batch, np.float32) / 255
        q.put(x_batch) 
開發者ID:petrosgk,項目名稱:Kaggle-Carvana-Image-Masking-Challenge,代碼行數:13,代碼來源:test_submit_multithreaded.py

示例6: predictor

# 需要導入模塊: import params [as 別名]
# 或者: from params import batch_size [as 別名]
def predictor(q, ):
    for i in tqdm(range(0, len(ids_test), batch_size)):
        x_batch = q.get()
        with graph.as_default():
            preds = model.predict_on_batch(x_batch)
        preds = np.squeeze(preds, axis=3)
        for pred in preds:
            prob = cv2.resize(pred, (orig_width, orig_height))
            mask = prob > threshold
            rle = run_length_encode(mask)
            rles.append(rle) 
開發者ID:petrosgk,項目名稱:Kaggle-Carvana-Image-Masking-Challenge,代碼行數:13,代碼來源:test_submit_multithreaded.py

示例7: train_generator

# 需要導入模塊: import params [as 別名]
# 或者: from params import batch_size [as 別名]
def train_generator():
    while True:
        for start in range(0, len(ids_train_split), batch_size):
            x_batch = []
            y_batch = []
            end = min(start + batch_size, len(ids_train_split))
            ids_train_batch = ids_train_split[start:end]
            for id in ids_train_batch.values:
                img = cv2.imread('input/train/{}.jpg'.format(id))
                img = cv2.resize(img, (input_size, input_size))
                mask = cv2.imread('input/train_masks/{}_mask.png'.format(id), cv2.IMREAD_GRAYSCALE)
                mask = cv2.resize(mask, (input_size, input_size))
                img = randomHueSaturationValue(img,
                                               hue_shift_limit=(-50, 50),
                                               sat_shift_limit=(-5, 5),
                                               val_shift_limit=(-15, 15))
                img, mask = randomShiftScaleRotate(img, mask,
                                                   shift_limit=(-0.0625, 0.0625),
                                                   scale_limit=(-0.1, 0.1),
                                                   rotate_limit=(-0, 0))
                img, mask = randomHorizontalFlip(img, mask)
                mask = np.expand_dims(mask, axis=2)
                x_batch.append(img)
                y_batch.append(mask)
            x_batch = np.array(x_batch, np.float32) / 255
            y_batch = np.array(y_batch, np.float32) / 255
            yield x_batch, y_batch 
開發者ID:petrosgk,項目名稱:Kaggle-Carvana-Image-Masking-Challenge,代碼行數:29,代碼來源:train.py

示例8: load_batch

# 需要導入模塊: import params [as 別名]
# 或者: from params import batch_size [as 別名]
def load_batch(purpose):
    p = purpose
    assert len(imgs[p]) == len(wheels[p])
    n = len(imgs[p])
    assert n > 0

    ii = random.sample(xrange(0, n), params.batch_size)
    assert len(ii) == params.batch_size

    xx, yy = [], []
    for i in ii:
        xx.append(imgs[p][i])
        yy.append(wheels[p][i])

    return xx, yy 
開發者ID:mbechtel2,項目名稱:DeepPicar-v2,代碼行數:17,代碼來源:data_shuffled.py

示例9: load_batch_category_normal

# 需要導入模塊: import params [as 別名]
# 或者: from params import batch_size [as 別名]
def load_batch_category_normal(purpose):
    p = purpose
    xx, yy = [], []
    nc = len(categories)
    for c in categories:
        n = len(imgs_cat[p][c])
        assert n > 0
        ii = random.sample(xrange(0, n), int(params.batch_size/nc))
        assert len(ii) == int(params.batch_size/nc)
        for i in ii:
            xx.append(imgs_cat[p][c][i])
            yy.append(wheels_cat[p][c][i])

    return xx, yy 
開發者ID:mbechtel2,項目名稱:DeepPicar-v2,代碼行數:16,代碼來源:data_shuffled.py

示例10: convert

# 需要導入模塊: import params [as 別名]
# 或者: from params import batch_size [as 別名]
def convert(args):

    make_folder(args.save_folder)

    labels = get_labels(params)
    audio_conf = get_audio_conf(params)

    val_batch_size = min(8, params.batch_size_val)
    print("Using bs={} for validation. Parameter found was {}".format(val_batch_size, params.batch_size_val))

    train_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=params.train_manifest, labels=labels,
                                       normalize=True, augment=params.augment)
    train_loader = AudioDataLoader(train_dataset, batch_size=params.batch_size,
                                   num_workers=(1 if params.cuda else 1))

    model = get_model(params)

    if args.continue_from:
        print("Loading checkpoint model %s" % args.continue_from)
        package = torch.load(args.continue_from)
        model.load_state_dict(package['state_dict'])
        if params.cuda:
            model = model.cuda()

    if params.cuda:
        model = torch.nn.DataParallel(model).cuda()

    print(model)
    print("Number of parameters: %d" % DeepSpeech.get_param_size(model))

    # Begin ONNX conversion
    model.train(False)
    # Input to the model
    data = next(iter(train_loader))
    inputs, targets, input_percentages, target_sizes = data
    inputs = torch.Tensor(inputs, requires_grad=False)

    if params.cuda:
        inputs = inputs.cuda()

    x = inputs
    print("input has size:{}".format(x.size()))

    # Export the model
    onnx_file_path = osp.join(osp.dirname(args.continue_from), osp.basename(args.continue_from).split('.')[0] + ".onnx")
    print("Saving new ONNX model to: {}".format(onnx_file_path))
    torch.onnx.export(model,  # model being run
                      inputs,  # model input (or a tuple for multiple inputs)
                      onnx_file_path,  # where to save the model (can be a file or file-like object)
                      export_params=True,  # store the trained parameter weights inside the model file
                      verbose=False) 
開發者ID:mlperf,項目名稱:inference,代碼行數:53,代碼來源:convert_onnx.py

示例11: data_generator

# 需要導入模塊: import params [as 別名]
# 或者: from params import batch_size [as 別名]
def data_generator(data=None, meta_data=None, labels=None, batch_size=16, augment={}, opt_shuffle=True):
    
    indices = [i for i in range(len(labels))]
    
    while True:
        
        if opt_shuffle:
            shuffle(indices)
        
        x_data = np.copy(data)
        x_meta_data = np.copy(meta_data)
        x_labels = np.copy(labels)
        
        for start in range(0, len(labels), batch_size):
            end = min(start + batch_size, len(labels))
            sel_indices = indices[start:end]
            
            #select data
            data_batch = x_data[sel_indices]
            xm_batch = x_meta_data[sel_indices]
            y_batch = x_labels[sel_indices]
            x_batch = []
            
            for x in data_batch:
                 
                #augment                               
                if augment.get('Rotate', False):
                    x = aug.Rotate(x, u=0.1, v=np.random.random())
                    x = aug.Rotate90(x, u=0.1, v=np.random.random())

                if augment.get('Shift', False):
                    x = aug.Shift(x, u=0.05, v=np.random.random())

                if augment.get('Zoom', False):
                    x = aug.Zoom(x, u=0.05, v=np.random.random())

                if augment.get('Flip', False):
                    x = aug.HorizontalFlip(x, u=0.5, v=np.random.random())
                    x = aug.VerticalFlip(x, u=0.5, v=np.random.random())

                x_batch.append(x)
                
            x_batch = np.array(x_batch, np.float32)
            
            yield [x_batch, xm_batch], y_batch
            

############################################################################### 
開發者ID:cttsai1985,項目名稱:Kaggle-Statoil-Iceberg-Classifier-ConvNets,代碼行數:50,代碼來源:cnn_train.py


注:本文中的params.batch_size方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。