本文整理匯總了Python中param_parser.parameter_parser方法的典型用法代碼示例。如果您正苦於以下問題:Python param_parser.parameter_parser方法的具體用法?Python param_parser.parameter_parser怎麽用?Python param_parser.parameter_parser使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類param_parser
的用法示例。
在下文中一共展示了param_parser.parameter_parser方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: import param_parser [as 別名]
# 或者: from param_parser import parameter_parser [as 別名]
def main():
"""
Parsing command line parameters.
Creating target matrix.
Fitting an SGCN.
Predicting edge signs and saving the embedding.
"""
args = parameter_parser()
tab_printer(args)
edges = read_graph(args)
trainer = SignedGCNTrainer(args, edges)
trainer.setup_dataset()
trainer.create_and_train_model()
if args.test_size > 0:
trainer.save_model()
score_printer(trainer.logs)
save_logs(args, trainer.logs)
示例2: main
# 需要導入模塊: import param_parser [as 別名]
# 或者: from param_parser import parameter_parser [as 別名]
def main():
"""
Parsing command line parameters, reading data.
Doing sparsification, fitting a GWNN and saving the logs.
"""
args = parameter_parser()
tab_printer(args)
graph = graph_reader(args.edge_path)
features = feature_reader(args.features_path)
target = target_reader(args.target_path)
sparsifier = WaveletSparsifier(graph, args.scale, args.approximation_order, args.tolerance)
sparsifier.calculate_all_wavelets()
trainer = GWNNTrainer(args, sparsifier, features, target)
trainer.fit()
trainer.score()
save_logs(args, trainer.logs)
示例3: main
# 需要導入模塊: import param_parser [as 別名]
# 或者: from param_parser import parameter_parser [as 別名]
def main():
"""
Parsing command line parameters, reading data.
Fitting an NGCN and scoring the model.
"""
args = parameter_parser()
torch.manual_seed(args.seed)
tab_printer(args)
graph = graph_reader(args.edge_path)
features = feature_reader(args.features_path)
target = target_reader(args.target_path)
trainer = Trainer(args, graph, features, target, True)
trainer.fit()
if args.model == "mixhop":
trainer.evaluate_architecture()
args = trainer.reset_architecture()
trainer = Trainer(args, graph, features, target, False)
trainer.fit()
示例4: main
# 需要導入模塊: import param_parser [as 別名]
# 或者: from param_parser import parameter_parser [as 別名]
def main():
"""
Parsing command lines, creating target matrix, fitting BANE and saving the embedding.
"""
args = parameter_parser()
tab_printer(args)
P = read_graph(args)
X = read_features(args)
model = BANE(args, P, X)
model.fit()
model.save_embedding()
示例5: main
# 需要導入模塊: import param_parser [as 別名]
# 或者: from param_parser import parameter_parser [as 別名]
def main():
"""
Parsing command line parameters, creating EgoNets.
Creating a partition of the persona graph. Saving the memberships.
"""
args = parameter_parser()
tab_printer(args)
graph = graph_reader(args.edge_path)
splitter = EgoNetSplitter(args.resolution)
splitter.fit(graph)
membership_saver(args.output_path, splitter.overlapping_partitions)
示例6: main
# 需要導入模塊: import param_parser [as 別名]
# 或者: from param_parser import parameter_parser [as 別名]
def main():
"""
Parsing command lines, creating target matrix.
Fitting an Attention Walker and saving the embedding.
"""
args = parameter_parser()
tab_printer(args)
model = AttentionWalkTrainer(args)
model.fit()
model.save_model()
示例7: main
# 需要導入模塊: import param_parser [as 別名]
# 或者: from param_parser import parameter_parser [as 別名]
def main():
"""
Parsing command line parameters.
Reading data, embedding base graph, creating persona graph and learning a splitter.
Saving the persona mapping and the embedding.
"""
args = parameter_parser()
torch.manual_seed(args.seed)
tab_printer(args)
graph = graph_reader(args.edge_path)
trainer = SplitterTrainer(graph, args)
trainer.fit()
trainer.save_embedding()
trainer.save_persona_graph_mapping()
示例8: main
# 需要導入模塊: import param_parser [as 別名]
# 或者: from param_parser import parameter_parser [as 別名]
def main():
"""
Parsing command lines, creating target matrix.
Fitting SINE and saving the embedding.
"""
args = parameter_parser()
tab_printer(args)
model = SINETrainer(args)
model.fit()
model.save_embedding()
示例9: main
# 需要導入模塊: import param_parser [as 別名]
# 或者: from param_parser import parameter_parser [as 別名]
def main():
"""
Parsing command line parameters, processing graphs, fitting a GAM.
"""
args = parameter_parser()
tab_printer(args)
model = GAMTrainer(args)
model.fit()
model.score()
model.save_predictions_and_logs()
示例10: execute_factorization
# 需要導入模塊: import param_parser [as 別名]
# 或者: from param_parser import parameter_parser [as 別名]
def execute_factorization():
"""
Reading the target matrix, running optimization and saving to hard drive.
"""
args = parameter_parser()
tab_printer(args)
X = read_features(args.input_path)
print("\nTraining started.\n")
model = ADMM_NMF(X, args)
model.optimize()
print("\nFactors saved.\n")
model.save_user_factors()
model.save_item_factors()
示例11: main
# 需要導入模塊: import param_parser [as 別名]
# 或者: from param_parser import parameter_parser [as 別名]
def main():
"""
Parsing command line parameters, reading data, fitting an APPNP/PPNP and scoring the model.
"""
args = parameter_parser()
torch.manual_seed(args.seed)
tab_printer(args)
graph = graph_reader(args.edge_path)
features = feature_reader(args.features_path)
target = target_reader(args.target_path)
trainer = APPNPTrainer(args, graph, features, target)
trainer.fit()
示例12: main
# 需要導入模塊: import param_parser [as 別名]
# 或者: from param_parser import parameter_parser [as 別名]
def main():
"""
Parsing command line parameters, reading data.
Fitting and scoring a SimGNN model.
"""
args = parameter_parser()
tab_printer(args)
trainer = SimGNNTrainer(args)
trainer.fit()
trainer.score()
示例13: main
# 需要導入模塊: import param_parser [as 別名]
# 或者: from param_parser import parameter_parser [as 別名]
def main():
"""
Parsing command line parameters, reading data.
Fitting and scoring a SEAL-CI model.
"""
args = parameter_parser()
tab_printer(args)
trainer = SEALCITrainer(args)
trainer.fit()
trainer.score()
示例14: main
# 需要導入模塊: import param_parser [as 別名]
# 或者: from param_parser import parameter_parser [as 別名]
def main():
"""
Parsing command line parameters, processing graphs, fitting a CapsGNN.
"""
args = parameter_parser()
tab_printer(args)
model = CapsGNNTrainer(args)
model.fit()
model.score()
model.save_predictions()
示例15: main
# 需要導入模塊: import param_parser [as 別名]
# 或者: from param_parser import parameter_parser [as 別名]
def main():
"""
Parsing command line parameters, reading data, fitting EdMot and scoring the model.
"""
args = parameter_parser()
tab_printer(args)
graph = graph_reader(args.edge_path)
model = EdMot(graph, args.components, args.cutoff)
memberships = model.fit()
membership_saver(args.membership_path, memberships)