本文整理匯總了Python中papermill.execute_notebook方法的典型用法代碼示例。如果您正苦於以下問題:Python papermill.execute_notebook方法的具體用法?Python papermill.execute_notebook怎麽用?Python papermill.execute_notebook使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類papermill
的用法示例。
在下文中一共展示了papermill.execute_notebook方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_text_classification_unified_information
# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_text_classification_unified_information(notebooks, tmp):
notebook_path = notebooks["tc_unified_information"]
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
kernel_name=KERNEL_NAME,
parameters=dict(
DATA_FOLDER=tmp,
BERT_CACHE_DIR=tmp,
BATCH_SIZE=32,
BATCH_SIZE_PRED=512,
NUM_EPOCHS=1,
TEST=True,
QUICK_RUN=True,
),
)
result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
assert pytest.approx(result["accuracy"], 0.93, abs=ABS_TOL)
assert pytest.approx(result["precision"], 0.93, abs=ABS_TOL)
assert pytest.approx(result["recall"], 0.93, abs=ABS_TOL)
assert pytest.approx(result["f1"], 0.93, abs=ABS_TOL)
示例2: test_text_classification_introspective_rationale
# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_text_classification_introspective_rationale(notebooks, tmp):
notebook_path = notebooks["tc_introspective_rationale"]
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
kernel_name=KERNEL_NAME,
parameters=dict(
DATA_FOLDER=tmp,
CUDA=torch.cuda.is_available(),
QUICK_RUN=False,
MODEL_SAVE_DIR=tmp
),
)
result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
print(result)
assert pytest.approx(result["accuracy"], 0.72, abs=ABS_TOL)
assert pytest.approx(result["anti_accuracy"], 0.69, abs=ABS_TOL)
assert pytest.approx(result["sparsity"], 0.17, abs=ABS_TOL)
開發者ID:interpretml,項目名稱:interpret-text,代碼行數:20,代碼來源:test_notebook_introspective_rationale_explainer.py
示例3: test_notebooks_basic_translations_diff
# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_notebooks_basic_translations_diff(
isolated_filesystem, translated_notebook
): # pragma: no cover
"""
Test Notebooks in the tutorial translations folder if they have been
modified in the current pull request. This test should not consider any
notebooks locally. It should be used on Github Actions.
"""
notebook = "/".join(translated_notebook.split("/")[-2:])
notebook = f"translations/{notebook}"
list_name = Path(f"examples/tutorials/{notebook}")
tested_notebooks.append(str(list_name))
res = pm.execute_notebook(
notebook,
"/dev/null",
parameters={"epochs": 1, "n_test_batches": 5, "n_train_items": 64, "n_test_items": 64},
timeout=300,
)
assert isinstance(res, nbformat.notebooknode.NotebookNode)
示例4: test_fl_sms
# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_fl_sms(isolated_filesystem): # pragma: no cover
sys.path.append("advanced/federated_sms_spam_prediction/")
import preprocess
os.chdir("advanced/federated_sms_spam_prediction/")
notebook = "Federated SMS Spam prediction.ipynb"
p_name = Path("examples/tutorials/advanced/federated_sms_spam_prediction/")
tested_notebooks.append(str(p_name / notebook))
Path("data").mkdir(parents=True, exist_ok=True)
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip"
urllib.request.urlretrieve(url, "data.zip")
with ZipFile("data.zip", "r") as zipObj:
# Extract all the contents of the zip file in current directory
zipObj.extractall()
preprocess.main()
res = pm.execute_notebook(notebook, "/dev/null", parameters={"epochs": 1}, timeout=300)
assert isinstance(res, nbformat.notebooknode.NotebookNode)
示例5: assay_one_notebook
# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def assay_one_notebook(notebook_name, test_values):
"""Test a single notebook.
This uses nbformat to append `nteract-scrapbook` commands to the
specified notebook. The content of the commands and their expected
values are stored in the `test_values` dictionary. The keys of this
dictionary are strings to be used as scrapbook keys. They corresponding
value is a `ScrapSpec` tuple. The `code` member of this tuple is
the code (as a string) to be run to generate the scrapbook value. The
`expected` member is a Python object which is checked for equality with
the scrapbook value
Makes certain assumptions about directory layout.
"""
input_notebook = "notebooks/" + notebook_name + ".ipynb"
processed_notebook = "./test/notebooks/" + notebook_name + ".processed.ipynb"
output_notebook = "./test/notebooks/" + notebook_name + ".output.ipynb"
append_scrapbook_commands(input_notebook, processed_notebook, test_values)
pm.execute_notebook(processed_notebook, output_notebook)
nb = sb.read_notebook(output_notebook)
for k, v in test_values.items():
assert nb.scraps[k].data == v.expected
示例6: test_no_raise
# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_no_raise(self):
nbs = self.list_notebooks()
here = os.path.dirname(__file__)
out_dir = "{}/out".format(here)
if not os.path.exists(out_dir):
os.mkdir(out_dir)
for nb_input in nbs:
basename = os.path.basename(nb_input)
nb_output = "{}/{}".format(out_dir, basename)
try:
pm.execute_notebook(nb_input, nb_output)
except Exception as e:
with open(nb_output) as f:
print(f.read())
raise e
self.assertEqual(1, 1)
示例7: test_unilm_abstractive_summarization
# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_unilm_abstractive_summarization(notebooks, tmp):
notebook_path = notebooks["unilm_abstractive_summarization"]
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
kernel_name=KERNEL_NAME,
parameters=dict(
QUICK_RUN=True,
NUM_GPUS=torch.cuda.device_count(),
TOP_N=100,
WARMUP_STEPS=5,
MAX_STEPS=50,
GRADIENT_ACCUMULATION_STEPS=1,
TEST_PER_GPU_BATCH_SIZE=2,
BEAM_SIZE=3,
MODEL_DIR=tmp,
RESULT_DIR=tmp,
),
)
result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
assert pytest.approx(result["rouge_1_f_score"], 0.2, abs=ABS_TOL)
assert pytest.approx(result["rouge_2_f_score"], 0.07, abs=ABS_TOL)
assert pytest.approx(result["rouge_l_f_score"], 0.16, abs=ABS_TOL)
示例8: test_entailment_multinli_bert
# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_entailment_multinli_bert(notebooks, tmp):
notebook_path = notebooks["entailment_multinli_transformers"]
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
parameters={
"MODEL_NAME": "bert-base-uncased",
"TO_LOWER": True,
"TRAIN_DATA_USED_FRACTION": 0.05,
"DEV_DATA_USED_FRACTION": 0.05,
"NUM_EPOCHS": 1,
"CACHE_DIR": tmp
},
kernel_name=KERNEL_NAME,
)
result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
assert pytest.approx(result["matched_precision"], 0.76, abs=ABS_TOL)
assert pytest.approx(result["matched_recall"], 0.76, abs=ABS_TOL)
assert pytest.approx(result["matched_f1"], 0.76, abs=ABS_TOL)
assert pytest.approx(result["mismatched_precision"], 0.76, abs=ABS_TOL)
assert pytest.approx(result["mismatched_recall"], 0.76, abs=ABS_TOL)
assert pytest.approx(result["mismatched_f1"], 0.76, abs=ABS_TOL)
示例9: test_entailment_xnli_bert_azureml
# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_entailment_xnli_bert_azureml(
notebooks, subscription_id, resource_group, workspace_name, workspace_region, cluster_name
):
notebook_path = notebooks["entailment_xnli_bert_azureml"]
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
parameters={
"DATA_PERCENT_USED": 0.0025,
"subscription_id": subscription_id,
"resource_group": resource_group,
"workspace_name": workspace_name,
"workspace_region": workspace_region,
"cluster_name": cluster_name,
},
kernel_name=KERNEL_NAME,
)
with open("outputs/results.json", "r") as handle:
result_dict = json.load(handle)
assert result_dict["weighted avg"]["f1-score"] == pytest.approx(0.2, abs=ABS_TOL)
if os.path.exists("outputs"):
shutil.rmtree("outputs")
示例10: test_minilm_abstractive_summarization
# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_minilm_abstractive_summarization(notebooks, tmp):
notebook_path = notebooks["minilm_abstractive_summarization"]
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
kernel_name=KERNEL_NAME,
parameters=dict(
QUICK_RUN=True,
NUM_GPUS=torch.cuda.device_count(),
TOP_N=100,
WARMUP_STEPS=5,
MAX_STEPS=50,
GRADIENT_ACCUMULATION_STEPS=1,
TEST_PER_GPU_BATCH_SIZE=2,
BEAM_SIZE=3,
CLEANUP_RESULTS=True,
),
)
result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
assert pytest.approx(result["rouge_1_f_score"], 0.2, abs=ABS_TOL)
assert pytest.approx(result["rouge_2_f_score"], 0.07, abs=ABS_TOL)
assert pytest.approx(result["rouge_l_f_score"], 0.16, abs=ABS_TOL)
示例11: test_question_answering_squad_transformers
# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_question_answering_squad_transformers(notebooks, tmp):
notebook_path = notebooks["question_answering_squad_transformers"]
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
parameters={
"TRAIN_DATA_USED_PERCENT": 0.15,
"DEV_DATA_USED_PERCENT": 0.15,
"NUM_EPOCHS": 1,
"MAX_SEQ_LENGTH": 384,
"DOC_STRIDE": 128,
"PER_GPU_BATCH_SIZE": 4,
"MODEL_NAME": "distilbert-base-uncased",
"DO_LOWER_CASE": True,
"CACHE_DIR": tmp
},
kernel_name=KERNEL_NAME,
)
result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
assert pytest.approx(result["exact"], 0.55, abs=ABS_TOL)
assert pytest.approx(result["f1"], 0.70, abs=ABS_TOL)
示例12: test_bidaf_deep_dive
# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_bidaf_deep_dive(
notebooks, subscription_id, resource_group, workspace_name, workspace_region
):
notebook_path = notebooks["bidaf_deep_dive"]
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
parameters={
"NUM_EPOCHS": 1,
"config_path": None,
"PROJECT_FOLDER": "examples/question_answering/bidaf-question-answering",
"SQUAD_FOLDER": "examples/question_answering/squad",
"LOGS_FOLDER": "examples/question_answering/",
"BIDAF_CONFIG_PATH": "examples/question_answering/",
"subscription_id": subscription_id,
"resource_group": resource_group,
"workspace_name": workspace_name,
"workspace_region": workspace_region,
},
)
result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict["validation_EM"]
assert result == pytest.approx(0.5, abs=ABS_TOL)
示例13: test_bidaf_quickstart
# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_bidaf_quickstart(
notebooks, subscription_id, resource_group, workspace_name, workspace_region
):
notebook_path = notebooks["bidaf_quickstart"]
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
parameters={
"config_path": None,
"subscription_id": subscription_id,
"resource_group": resource_group,
"workspace_name": workspace_name,
"workspace_region": workspace_region,
"webservice_name": "aci-test-service",
},
)
result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict["answer"]
assert result == "Bi-Directional Attention Flow"
示例14: test_extractive_summarization_cnndm_transformers
# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_extractive_summarization_cnndm_transformers(notebooks, tmp):
notebook_path = notebooks["extractive_summarization_cnndm_transformer"]
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
kernel_name=KERNEL_NAME,
parameters=dict(
QUICK_RUN=True,
TOP_N=100,
CHUNK_SIZE=200,
USE_PREPROCESSED_DATA=False,
DATA_PATH=tmp,
CACHE_DIR=tmp,
BATCH_SIZE=3000,
REPORT_EVERY=50,
MAX_STEPS=100,
WARMUP_STEPS=5e2,
MODEL_NAME="distilbert-base-uncased",
),
)
result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
assert pytest.approx(result["rouge_2_f_score"], 0.1, abs=ABS_TOL)
示例15: test_abstractive_summarization_bertsumabs_cnndm
# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_abstractive_summarization_bertsumabs_cnndm(notebooks, tmp):
notebook_path = notebooks["abstractive_summarization_bertsumabs_cnndm"]
pm.execute_notebook(
notebook_path,
OUTPUT_NOTEBOOK,
kernel_name=KERNEL_NAME,
parameters=dict(
QUICK_RUN=True,
TOP_N=1000,
MAX_POS=512,
DATA_FOLDER=tmp,
CACHE_DIR=tmp,
BATCH_SIZE_PER_GPU=3,
REPORT_EVERY=50,
MAX_STEPS=100,
MODEL_NAME="bert-base-uncased",
),
)
result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
assert pytest.approx(result["rouge_2_f_score"], 0.01, abs=ABS_TOL)
開發者ID:microsoft,項目名稱:nlp-recipes,代碼行數:22,代碼來源:test_notebooks_abstractive_summarization_bertsumabs.py