當前位置: 首頁>>代碼示例>>Python>>正文


Python papermill.execute_notebook方法代碼示例

本文整理匯總了Python中papermill.execute_notebook方法的典型用法代碼示例。如果您正苦於以下問題:Python papermill.execute_notebook方法的具體用法?Python papermill.execute_notebook怎麽用?Python papermill.execute_notebook使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在papermill的用法示例。


在下文中一共展示了papermill.execute_notebook方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_text_classification_unified_information

# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_text_classification_unified_information(notebooks, tmp):
    notebook_path = notebooks["tc_unified_information"]
    pm.execute_notebook(
        notebook_path,
        OUTPUT_NOTEBOOK,
        kernel_name=KERNEL_NAME,
        parameters=dict(
            DATA_FOLDER=tmp,
            BERT_CACHE_DIR=tmp,
            BATCH_SIZE=32,
            BATCH_SIZE_PRED=512,
            NUM_EPOCHS=1,
            TEST=True,
            QUICK_RUN=True,
        ),
    )
    result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
    assert pytest.approx(result["accuracy"], 0.93, abs=ABS_TOL)
    assert pytest.approx(result["precision"], 0.93, abs=ABS_TOL)
    assert pytest.approx(result["recall"], 0.93, abs=ABS_TOL)
    assert pytest.approx(result["f1"], 0.93, abs=ABS_TOL) 
開發者ID:interpretml,項目名稱:interpret-text,代碼行數:23,代碼來源:test_notebook_unified_information_explainer.py

示例2: test_text_classification_introspective_rationale

# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_text_classification_introspective_rationale(notebooks, tmp):
    notebook_path = notebooks["tc_introspective_rationale"]
    pm.execute_notebook(
        notebook_path,
        OUTPUT_NOTEBOOK,
        kernel_name=KERNEL_NAME,
        parameters=dict(
            DATA_FOLDER=tmp,
            CUDA=torch.cuda.is_available(),
            QUICK_RUN=False,
            MODEL_SAVE_DIR=tmp
        ),
    )
    result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
    print(result)
    assert pytest.approx(result["accuracy"], 0.72, abs=ABS_TOL)
    assert pytest.approx(result["anti_accuracy"], 0.69, abs=ABS_TOL)
    assert pytest.approx(result["sparsity"], 0.17, abs=ABS_TOL) 
開發者ID:interpretml,項目名稱:interpret-text,代碼行數:20,代碼來源:test_notebook_introspective_rationale_explainer.py

示例3: test_notebooks_basic_translations_diff

# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_notebooks_basic_translations_diff(
    isolated_filesystem, translated_notebook
):  # pragma: no cover
    """
    Test Notebooks in the tutorial translations folder if they have been
    modified in the current pull request. This test should not consider any
    notebooks locally. It should be used on Github Actions.
    """
    notebook = "/".join(translated_notebook.split("/")[-2:])
    notebook = f"translations/{notebook}"
    list_name = Path(f"examples/tutorials/{notebook}")
    tested_notebooks.append(str(list_name))
    res = pm.execute_notebook(
        notebook,
        "/dev/null",
        parameters={"epochs": 1, "n_test_batches": 5, "n_train_items": 64, "n_test_items": 64},
        timeout=300,
    )
    assert isinstance(res, nbformat.notebooknode.NotebookNode) 
開發者ID:OpenMined,項目名稱:PySyft,代碼行數:21,代碼來源:test_notebooks.py

示例4: test_fl_sms

# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_fl_sms(isolated_filesystem):  # pragma: no cover
    sys.path.append("advanced/federated_sms_spam_prediction/")
    import preprocess

    os.chdir("advanced/federated_sms_spam_prediction/")

    notebook = "Federated SMS Spam prediction.ipynb"
    p_name = Path("examples/tutorials/advanced/federated_sms_spam_prediction/")
    tested_notebooks.append(str(p_name / notebook))
    Path("data").mkdir(parents=True, exist_ok=True)
    url = "https://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip"
    urllib.request.urlretrieve(url, "data.zip")
    with ZipFile("data.zip", "r") as zipObj:
        # Extract all the contents of the zip file in current directory
        zipObj.extractall()
    preprocess.main()
    res = pm.execute_notebook(notebook, "/dev/null", parameters={"epochs": 1}, timeout=300)
    assert isinstance(res, nbformat.notebooknode.NotebookNode) 
開發者ID:OpenMined,項目名稱:PySyft,代碼行數:20,代碼來源:test_notebooks.py

示例5: assay_one_notebook

# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def assay_one_notebook(notebook_name, test_values):
    """Test a single notebook.

    This uses nbformat to append `nteract-scrapbook` commands to the
    specified notebook. The content of the commands and their expected
    values are stored in the `test_values` dictionary. The keys of this
    dictionary are strings to be used as scrapbook keys. They corresponding
    value is a `ScrapSpec` tuple. The `code` member of this tuple is
    the code (as a string) to be run to generate the scrapbook value. The
    `expected` member is a Python object which is checked for equality with
    the scrapbook value

    Makes certain assumptions about directory layout.
    """
    input_notebook = "notebooks/" + notebook_name + ".ipynb"
    processed_notebook = "./test/notebooks/" + notebook_name + ".processed.ipynb"
    output_notebook = "./test/notebooks/" + notebook_name + ".output.ipynb"

    append_scrapbook_commands(input_notebook, processed_notebook, test_values)
    pm.execute_notebook(processed_notebook, output_notebook)
    nb = sb.read_notebook(output_notebook)

    for k, v in test_values.items():
        assert nb.scraps[k].data == v.expected 
開發者ID:fairlearn,項目名稱:fairlearn,代碼行數:26,代碼來源:test_notebooks.py

示例6: test_no_raise

# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_no_raise(self):

        nbs = self.list_notebooks()

        here = os.path.dirname(__file__)
        out_dir = "{}/out".format(here)
        if not os.path.exists(out_dir):
            os.mkdir(out_dir)

        for nb_input in nbs:
            basename = os.path.basename(nb_input)

            nb_output = "{}/{}".format(out_dir, basename)

            try:
                pm.execute_notebook(nb_input, nb_output)
            except Exception as e:
                with open(nb_output) as f:
                    print(f.read())

                raise e

        self.assertEqual(1, 1) 
開發者ID:NII-cloud-operation,項目名稱:sshkernel,代碼行數:25,代碼來源:test_sshd_integration.py

示例7: test_unilm_abstractive_summarization

# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_unilm_abstractive_summarization(notebooks, tmp):
    notebook_path = notebooks["unilm_abstractive_summarization"]
    pm.execute_notebook(
        notebook_path,
        OUTPUT_NOTEBOOK,
        kernel_name=KERNEL_NAME,
        parameters=dict(
            QUICK_RUN=True,
            NUM_GPUS=torch.cuda.device_count(),
            TOP_N=100,
            WARMUP_STEPS=5,
            MAX_STEPS=50,
            GRADIENT_ACCUMULATION_STEPS=1,
            TEST_PER_GPU_BATCH_SIZE=2,
            BEAM_SIZE=3,
            MODEL_DIR=tmp,
            RESULT_DIR=tmp,
        ),
    )
    result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
    assert pytest.approx(result["rouge_1_f_score"], 0.2, abs=ABS_TOL)
    assert pytest.approx(result["rouge_2_f_score"], 0.07, abs=ABS_TOL)
    assert pytest.approx(result["rouge_l_f_score"], 0.16, abs=ABS_TOL) 
開發者ID:microsoft,項目名稱:nlp-recipes,代碼行數:25,代碼來源:test_notebooks_unilm_abstractive_summarization.py

示例8: test_entailment_multinli_bert

# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_entailment_multinli_bert(notebooks, tmp):
    notebook_path = notebooks["entailment_multinli_transformers"]
    pm.execute_notebook(
        notebook_path,
        OUTPUT_NOTEBOOK,
        parameters={
            "MODEL_NAME": "bert-base-uncased",
            "TO_LOWER": True,
            "TRAIN_DATA_USED_FRACTION": 0.05,
            "DEV_DATA_USED_FRACTION": 0.05,
            "NUM_EPOCHS": 1,
            "CACHE_DIR": tmp
        },
        kernel_name=KERNEL_NAME,
    )
    result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
    assert pytest.approx(result["matched_precision"], 0.76, abs=ABS_TOL)
    assert pytest.approx(result["matched_recall"], 0.76, abs=ABS_TOL)
    assert pytest.approx(result["matched_f1"], 0.76, abs=ABS_TOL)
    assert pytest.approx(result["mismatched_precision"], 0.76, abs=ABS_TOL)
    assert pytest.approx(result["mismatched_recall"], 0.76, abs=ABS_TOL)
    assert pytest.approx(result["mismatched_f1"], 0.76, abs=ABS_TOL) 
開發者ID:microsoft,項目名稱:nlp-recipes,代碼行數:24,代碼來源:test_notebooks_entailment.py

示例9: test_entailment_xnli_bert_azureml

# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_entailment_xnli_bert_azureml(
    notebooks, subscription_id, resource_group, workspace_name, workspace_region, cluster_name
):
    notebook_path = notebooks["entailment_xnli_bert_azureml"]
    pm.execute_notebook(
        notebook_path,
        OUTPUT_NOTEBOOK,
        parameters={
            "DATA_PERCENT_USED": 0.0025,
            "subscription_id": subscription_id,
            "resource_group": resource_group,
            "workspace_name": workspace_name,
            "workspace_region": workspace_region,
            "cluster_name": cluster_name,
        },
        kernel_name=KERNEL_NAME,
    )

    with open("outputs/results.json", "r") as handle:
        result_dict = json.load(handle)
        assert result_dict["weighted avg"]["f1-score"] == pytest.approx(0.2, abs=ABS_TOL)

    if os.path.exists("outputs"):
        shutil.rmtree("outputs") 
開發者ID:microsoft,項目名稱:nlp-recipes,代碼行數:26,代碼來源:test_notebooks_entailment.py

示例10: test_minilm_abstractive_summarization

# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_minilm_abstractive_summarization(notebooks, tmp):
    notebook_path = notebooks["minilm_abstractive_summarization"]
    pm.execute_notebook(
        notebook_path,
        OUTPUT_NOTEBOOK,
        kernel_name=KERNEL_NAME,
        parameters=dict(
            QUICK_RUN=True,
            NUM_GPUS=torch.cuda.device_count(),
            TOP_N=100,
            WARMUP_STEPS=5,
            MAX_STEPS=50,
            GRADIENT_ACCUMULATION_STEPS=1,
            TEST_PER_GPU_BATCH_SIZE=2,
            BEAM_SIZE=3,
            CLEANUP_RESULTS=True,
        ),
    )
    result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
    assert pytest.approx(result["rouge_1_f_score"], 0.2, abs=ABS_TOL)
    assert pytest.approx(result["rouge_2_f_score"], 0.07, abs=ABS_TOL)
    assert pytest.approx(result["rouge_l_f_score"], 0.16, abs=ABS_TOL) 
開發者ID:microsoft,項目名稱:nlp-recipes,代碼行數:24,代碼來源:test_notebooks_minilm_abstractive_summarization.py

示例11: test_question_answering_squad_transformers

# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_question_answering_squad_transformers(notebooks, tmp):
    notebook_path = notebooks["question_answering_squad_transformers"]
    pm.execute_notebook(
        notebook_path,
        OUTPUT_NOTEBOOK,
        parameters={
            "TRAIN_DATA_USED_PERCENT": 0.15,
            "DEV_DATA_USED_PERCENT": 0.15,
            "NUM_EPOCHS": 1,
            "MAX_SEQ_LENGTH": 384,
            "DOC_STRIDE": 128,
            "PER_GPU_BATCH_SIZE": 4,
            "MODEL_NAME": "distilbert-base-uncased",
            "DO_LOWER_CASE": True,
            "CACHE_DIR": tmp
        },
        kernel_name=KERNEL_NAME,
    )
    result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
    assert pytest.approx(result["exact"], 0.55, abs=ABS_TOL)
    assert pytest.approx(result["f1"], 0.70, abs=ABS_TOL) 
開發者ID:microsoft,項目名稱:nlp-recipes,代碼行數:23,代碼來源:test_notebooks_question_answering.py

示例12: test_bidaf_deep_dive

# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_bidaf_deep_dive(
    notebooks, subscription_id, resource_group, workspace_name, workspace_region
):
    notebook_path = notebooks["bidaf_deep_dive"]
    pm.execute_notebook(
        notebook_path,
        OUTPUT_NOTEBOOK,
        parameters={
            "NUM_EPOCHS": 1,
            "config_path": None,
            "PROJECT_FOLDER": "examples/question_answering/bidaf-question-answering",
            "SQUAD_FOLDER": "examples/question_answering/squad",
            "LOGS_FOLDER": "examples/question_answering/",
            "BIDAF_CONFIG_PATH": "examples/question_answering/",
            "subscription_id": subscription_id,
            "resource_group": resource_group,
            "workspace_name": workspace_name,
            "workspace_region": workspace_region,
        },
    )
    result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict["validation_EM"]
    assert result == pytest.approx(0.5, abs=ABS_TOL) 
開發者ID:microsoft,項目名稱:nlp-recipes,代碼行數:24,代碼來源:test_notebooks_question_answering.py

示例13: test_bidaf_quickstart

# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_bidaf_quickstart(
    notebooks, subscription_id, resource_group, workspace_name, workspace_region
):
    notebook_path = notebooks["bidaf_quickstart"]
    pm.execute_notebook(
        notebook_path,
        OUTPUT_NOTEBOOK,
        parameters={
            "config_path": None,
            "subscription_id": subscription_id,
            "resource_group": resource_group,
            "workspace_name": workspace_name,
            "workspace_region": workspace_region,
            "webservice_name": "aci-test-service",
        },
    )
    result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict["answer"]
    assert result == "Bi-Directional Attention Flow" 
開發者ID:microsoft,項目名稱:nlp-recipes,代碼行數:20,代碼來源:test_notebooks_question_answering.py

示例14: test_extractive_summarization_cnndm_transformers

# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_extractive_summarization_cnndm_transformers(notebooks, tmp):
    notebook_path = notebooks["extractive_summarization_cnndm_transformer"]
    pm.execute_notebook(
        notebook_path,
        OUTPUT_NOTEBOOK,
        kernel_name=KERNEL_NAME,
        parameters=dict(
            QUICK_RUN=True,
            TOP_N=100,
            CHUNK_SIZE=200,
            USE_PREPROCESSED_DATA=False,
            DATA_PATH=tmp,
            CACHE_DIR=tmp,
            BATCH_SIZE=3000,
            REPORT_EVERY=50,
            MAX_STEPS=100,
            WARMUP_STEPS=5e2,
            MODEL_NAME="distilbert-base-uncased",
        ),
    )
    result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
    assert pytest.approx(result["rouge_2_f_score"], 0.1, abs=ABS_TOL) 
開發者ID:microsoft,項目名稱:nlp-recipes,代碼行數:24,代碼來源:test_notebooks_extractive_summarization.py

示例15: test_abstractive_summarization_bertsumabs_cnndm

# 需要導入模塊: import papermill [as 別名]
# 或者: from papermill import execute_notebook [as 別名]
def test_abstractive_summarization_bertsumabs_cnndm(notebooks, tmp):
    notebook_path = notebooks["abstractive_summarization_bertsumabs_cnndm"]
    pm.execute_notebook(
        notebook_path,
        OUTPUT_NOTEBOOK,
        kernel_name=KERNEL_NAME,
        parameters=dict(
            QUICK_RUN=True,
            TOP_N=1000,
            MAX_POS=512,
            DATA_FOLDER=tmp,
            CACHE_DIR=tmp,
            BATCH_SIZE_PER_GPU=3,
            REPORT_EVERY=50,
            MAX_STEPS=100,
            MODEL_NAME="bert-base-uncased",
        ),
    )
    result = sb.read_notebook(OUTPUT_NOTEBOOK).scraps.data_dict
    assert pytest.approx(result["rouge_2_f_score"], 0.01, abs=ABS_TOL) 
開發者ID:microsoft,項目名稱:nlp-recipes,代碼行數:22,代碼來源:test_notebooks_abstractive_summarization_bertsumabs.py


注:本文中的papermill.execute_notebook方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。