本文整理匯總了Python中pandas.util.testing.makeTimeDataFrame方法的典型用法代碼示例。如果您正苦於以下問題:Python testing.makeTimeDataFrame方法的具體用法?Python testing.makeTimeDataFrame怎麽用?Python testing.makeTimeDataFrame使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.util.testing
的用法示例。
在下文中一共展示了testing.makeTimeDataFrame方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_slice_locs_with_type_mismatch
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeTimeDataFrame [as 別名]
def test_slice_locs_with_type_mismatch():
df = tm.makeTimeDataFrame()
stacked = df.stack()
idx = stacked.index
with pytest.raises(TypeError, match='^Level type mismatch'):
idx.slice_locs((1, 3))
with pytest.raises(TypeError, match='^Level type mismatch'):
idx.slice_locs(df.index[5] + timedelta(seconds=30), (5, 2))
df = tm.makeCustomDataframe(5, 5)
stacked = df.stack()
idx = stacked.index
with pytest.raises(TypeError, match='^Level type mismatch'):
idx.slice_locs(timedelta(seconds=30))
# TODO: Try creating a UnicodeDecodeError in exception message
with pytest.raises(TypeError, match='^Level type mismatch'):
idx.slice_locs(df.index[1], (16, "a"))
示例2: test_transpose
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeTimeDataFrame [as 別名]
def test_transpose(self):
msg = (r"transpose\(\) got multiple values for "
r"keyword argument 'axes'")
for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
tm.makeObjectSeries()]:
# calls implementation in pandas/core/base.py
tm.assert_series_equal(s.transpose(), s)
for df in [tm.makeTimeDataFrame()]:
tm.assert_frame_equal(df.transpose().transpose(), df)
with catch_warnings(record=True):
simplefilter("ignore", FutureWarning)
for p in [tm.makePanel()]:
tm.assert_panel_equal(p.transpose(2, 0, 1)
.transpose(1, 2, 0), p)
with pytest.raises(TypeError, match=msg):
p.transpose(2, 0, 1, axes=(2, 0, 1))
示例3: test_numpy_transpose
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeTimeDataFrame [as 別名]
def test_numpy_transpose(self):
msg = "the 'axes' parameter is not supported"
s = tm.makeFloatSeries()
tm.assert_series_equal(np.transpose(s), s)
with pytest.raises(ValueError, match=msg):
np.transpose(s, axes=1)
df = tm.makeTimeDataFrame()
tm.assert_frame_equal(np.transpose(np.transpose(df)), df)
with pytest.raises(ValueError, match=msg):
np.transpose(df, axes=1)
with catch_warnings(record=True):
simplefilter("ignore", FutureWarning)
p = tm.makePanel()
tm.assert_panel_equal(np.transpose(
np.transpose(p, axes=(2, 0, 1)),
axes=(1, 2, 0)), p)
示例4: test_take_invalid_kwargs
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeTimeDataFrame [as 別名]
def test_take_invalid_kwargs(self):
indices = [-3, 2, 0, 1]
s = tm.makeFloatSeries()
df = tm.makeTimeDataFrame()
with catch_warnings(record=True):
simplefilter("ignore", FutureWarning)
p = tm.makePanel()
for obj in (s, df, p):
msg = r"take\(\) got an unexpected keyword argument 'foo'"
with pytest.raises(TypeError, match=msg):
obj.take(indices, foo=2)
msg = "the 'out' parameter is not supported"
with pytest.raises(ValueError, match=msg):
obj.take(indices, out=indices)
msg = "the 'mode' parameter is not supported"
with pytest.raises(ValueError, match=msg):
obj.take(indices, mode='clip')
示例5: test_groupby_multiple_key
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeTimeDataFrame [as 別名]
def test_groupby_multiple_key(df):
df = tm.makeTimeDataFrame()
grouped = df.groupby([lambda x: x.year, lambda x: x.month,
lambda x: x.day])
agged = grouped.sum()
assert_almost_equal(df.values, agged.values)
grouped = df.T.groupby([lambda x: x.year,
lambda x: x.month,
lambda x: x.day], axis=1)
agged = grouped.agg(lambda x: x.sum())
tm.assert_index_equal(agged.index, df.columns)
assert_almost_equal(df.T.values, agged.values)
agged = grouped.agg(lambda x: x.sum())
assert_almost_equal(df.T.values, agged.values)
示例6: test_skip_group_keys
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeTimeDataFrame [as 別名]
def test_skip_group_keys():
tsf = tm.makeTimeDataFrame()
grouped = tsf.groupby(lambda x: x.month, group_keys=False)
result = grouped.apply(lambda x: x.sort_values(by='A')[:3])
pieces = [group.sort_values(by='A')[:3] for key, group in grouped]
expected = pd.concat(pieces)
assert_frame_equal(result, expected)
grouped = tsf['A'].groupby(lambda x: x.month, group_keys=False)
result = grouped.apply(lambda x: x.sort_values()[:3])
pieces = [group.sort_values()[:3] for key, group in grouped]
expected = pd.concat(pieces)
assert_series_equal(result, expected)
示例7: test_getitem_setitem_non_ix_labels
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeTimeDataFrame [as 別名]
def test_getitem_setitem_non_ix_labels(self):
df = tm.makeTimeDataFrame()
start, end = df.index[[5, 10]]
result = df.loc[start:end]
result2 = df[start:end]
expected = df[5:11]
assert_frame_equal(result, expected)
assert_frame_equal(result2, expected)
result = df.copy()
result.loc[start:end] = 0
result2 = df.copy()
result2[start:end] = 0
expected = df.copy()
expected[5:11] = 0
assert_frame_equal(result, expected)
assert_frame_equal(result2, expected)
示例8: test_first_subset
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeTimeDataFrame [as 別名]
def test_first_subset(self):
ts = tm.makeTimeDataFrame(freq='12h')
result = ts.first('10d')
assert len(result) == 20
ts = tm.makeTimeDataFrame(freq='D')
result = ts.first('10d')
assert len(result) == 10
result = ts.first('3M')
expected = ts[:'3/31/2000']
assert_frame_equal(result, expected)
result = ts.first('21D')
expected = ts[:21]
assert_frame_equal(result, expected)
result = ts[:0].first('3M')
assert_frame_equal(result, ts[:0])
示例9: test_resample_frame_basic
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeTimeDataFrame [as 別名]
def test_resample_frame_basic():
df = tm.makeTimeDataFrame()
b = TimeGrouper('M')
g = df.groupby(b)
# check all cython functions work
funcs = ['add', 'mean', 'prod', 'min', 'max', 'var']
for f in funcs:
g._cython_agg_general(f)
result = df.resample('A').mean()
assert_series_equal(result['A'], df['A'].resample('A').mean())
result = df.resample('M').mean()
assert_series_equal(result['A'], df['A'].resample('M').mean())
df.resample('M', kind='period').mean()
df.resample('W-WED', kind='period').mean()
示例10: test_write_row_by_row
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeTimeDataFrame [as 別名]
def test_write_row_by_row(self):
frame = tm.makeTimeDataFrame()
frame.iloc[0, 0] = np.nan
drop_sql = "DROP TABLE IF EXISTS test"
create_sql = sql.get_schema(frame, 'test')
cur = self.conn.cursor()
cur.execute(drop_sql)
cur.execute(create_sql)
ins = "INSERT INTO test VALUES (%s, %s, %s, %s)"
for idx, row in frame.iterrows():
fmt_sql = format_query(ins, *row)
tquery(fmt_sql, cur=cur)
self.conn.commit()
result = sql.read_sql("select * from test", con=self.conn)
result.index = frame.index
tm.assert_frame_equal(result, frame, check_less_precise=True)
示例11: test_schema
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeTimeDataFrame [as 別名]
def test_schema(self):
frame = tm.makeTimeDataFrame()
create_sql = sql.get_schema(frame, 'test')
lines = create_sql.splitlines()
for l in lines:
tokens = l.split(' ')
if len(tokens) == 2 and tokens[0] == 'A':
assert tokens[1] == 'DATETIME'
frame = tm.makeTimeDataFrame()
drop_sql = "DROP TABLE IF EXISTS test"
create_sql = sql.get_schema(frame, 'test', keys=['A', 'B'])
lines = create_sql.splitlines()
assert 'PRIMARY KEY (`A`, `B`)' in create_sql
cur = self.conn.cursor()
cur.execute(drop_sql)
cur.execute(create_sql)
示例12: test_resample_frame_basic
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeTimeDataFrame [as 別名]
def test_resample_frame_basic(self):
df = tm.makeTimeDataFrame()
b = TimeGrouper('M')
g = df.groupby(b)
# check all cython functions work
funcs = ['add', 'mean', 'prod', 'min', 'max', 'var']
for f in funcs:
g._cython_agg_general(f)
result = df.resample('A').mean()
assert_series_equal(result['A'], df['A'].resample('A').mean())
result = df.resample('M').mean()
assert_series_equal(result['A'], df['A'].resample('M').mean())
df.resample('M', kind='period').mean()
df.resample('W-WED', kind='period').mean()
示例13: test_slice_locs_with_type_mismatch
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeTimeDataFrame [as 別名]
def test_slice_locs_with_type_mismatch(self):
df = tm.makeTimeDataFrame()
stacked = df.stack()
idx = stacked.index
tm.assert_raises_regex(TypeError, '^Level type mismatch',
idx.slice_locs, (1, 3))
tm.assert_raises_regex(TypeError, '^Level type mismatch',
idx.slice_locs,
df.index[5] + timedelta(
seconds=30), (5, 2))
df = tm.makeCustomDataframe(5, 5)
stacked = df.stack()
idx = stacked.index
with tm.assert_raises_regex(TypeError, '^Level type mismatch'):
idx.slice_locs(timedelta(seconds=30))
# TODO: Try creating a UnicodeDecodeError in exception message
with tm.assert_raises_regex(TypeError, '^Level type mismatch'):
idx.slice_locs(df.index[1], (16, "a"))
示例14: test_transpose
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeTimeDataFrame [as 別名]
def test_transpose(self):
msg = (r"transpose\(\) got multiple values for "
r"keyword argument 'axes'")
for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
tm.makeObjectSeries()]:
# calls implementation in pandas/core/base.py
tm.assert_series_equal(s.transpose(), s)
for df in [tm.makeTimeDataFrame()]:
tm.assert_frame_equal(df.transpose().transpose(), df)
with catch_warnings(record=True):
for p in [tm.makePanel()]:
tm.assert_panel_equal(p.transpose(2, 0, 1)
.transpose(1, 2, 0), p)
tm.assert_raises_regex(TypeError, msg, p.transpose,
2, 0, 1, axes=(2, 0, 1))
示例15: test_take
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeTimeDataFrame [as 別名]
def test_take(self):
indices = [1, 5, -2, 6, 3, -1]
for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
tm.makeObjectSeries()]:
out = s.take(indices)
expected = Series(data=s.values.take(indices),
index=s.index.take(indices), dtype=s.dtype)
tm.assert_series_equal(out, expected)
for df in [tm.makeTimeDataFrame()]:
out = df.take(indices)
expected = DataFrame(data=df.values.take(indices, axis=0),
index=df.index.take(indices),
columns=df.columns)
tm.assert_frame_equal(out, expected)
indices = [-3, 2, 0, 1]
with catch_warnings(record=True):
for p in [tm.makePanel()]:
out = p.take(indices)
expected = Panel(data=p.values.take(indices, axis=0),
items=p.items.take(indices),
major_axis=p.major_axis,
minor_axis=p.minor_axis)
tm.assert_panel_equal(out, expected)