本文整理匯總了Python中pandas.util.testing.makeCustomDataframe方法的典型用法代碼示例。如果您正苦於以下問題:Python testing.makeCustomDataframe方法的具體用法?Python testing.makeCustomDataframe怎麽用?Python testing.makeCustomDataframe使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.util.testing
的用法示例。
在下文中一共展示了testing.makeCustomDataframe方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_slice_locs_with_type_mismatch
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeCustomDataframe [as 別名]
def test_slice_locs_with_type_mismatch():
df = tm.makeTimeDataFrame()
stacked = df.stack()
idx = stacked.index
with pytest.raises(TypeError, match='^Level type mismatch'):
idx.slice_locs((1, 3))
with pytest.raises(TypeError, match='^Level type mismatch'):
idx.slice_locs(df.index[5] + timedelta(seconds=30), (5, 2))
df = tm.makeCustomDataframe(5, 5)
stacked = df.stack()
idx = stacked.index
with pytest.raises(TypeError, match='^Level type mismatch'):
idx.slice_locs(timedelta(seconds=30))
# TODO: Try creating a UnicodeDecodeError in exception message
with pytest.raises(TypeError, match='^Level type mismatch'):
idx.slice_locs(df.index[1], (16, "a"))
示例2: test_ix_empty_list_indexer_is_ok
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeCustomDataframe [as 別名]
def test_ix_empty_list_indexer_is_ok(self):
with catch_warnings(record=True):
from pandas.util.testing import makeCustomDataframe as mkdf
df = mkdf(5, 2)
# vertical empty
tm.assert_frame_equal(df.ix[:, []], df.iloc[:, :0],
check_index_type=True,
check_column_type=True)
# horizontal empty
tm.assert_frame_equal(df.ix[[], :], df.iloc[:0, :],
check_index_type=True,
check_column_type=True)
# horizontal empty
tm.assert_frame_equal(df.ix[[]], df.iloc[:0, :],
check_index_type=True,
check_column_type=True)
示例3: test_to_csv_cols_reordering
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeCustomDataframe [as 別名]
def test_to_csv_cols_reordering(self):
# GH3454
import pandas as pd
chunksize = 5
N = int(chunksize * 2.5)
df = mkdf(N, 3)
cs = df.columns
cols = [cs[2], cs[0]]
with ensure_clean() as path:
df.to_csv(path, columns=cols, chunksize=chunksize)
rs_c = pd.read_csv(path, index_col=0)
assert_frame_equal(df[cols], rs_c, check_names=False)
示例4: test_header_multi_index
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeCustomDataframe [as 別名]
def test_header_multi_index(all_parsers):
parser = all_parsers
expected = tm.makeCustomDataframe(
5, 3, r_idx_nlevels=2, c_idx_nlevels=4)
data = """\
C0,,C_l0_g0,C_l0_g1,C_l0_g2
C1,,C_l1_g0,C_l1_g1,C_l1_g2
C2,,C_l2_g0,C_l2_g1,C_l2_g2
C3,,C_l3_g0,C_l3_g1,C_l3_g2
R0,R1,,,
R_l0_g0,R_l1_g0,R0C0,R0C1,R0C2
R_l0_g1,R_l1_g1,R1C0,R1C1,R1C2
R_l0_g2,R_l1_g2,R2C0,R2C1,R2C2
R_l0_g3,R_l1_g3,R3C0,R3C1,R3C2
R_l0_g4,R_l1_g4,R4C0,R4C1,R4C2
"""
result = parser.read_csv(StringIO(data), header=[0, 1, 2, 3],
index_col=[0, 1])
tm.assert_frame_equal(result, expected)
示例5: test_slice_locs_with_type_mismatch
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeCustomDataframe [as 別名]
def test_slice_locs_with_type_mismatch(self):
df = tm.makeTimeDataFrame()
stacked = df.stack()
idx = stacked.index
tm.assert_raises_regex(TypeError, '^Level type mismatch',
idx.slice_locs, (1, 3))
tm.assert_raises_regex(TypeError, '^Level type mismatch',
idx.slice_locs,
df.index[5] + timedelta(
seconds=30), (5, 2))
df = tm.makeCustomDataframe(5, 5)
stacked = df.stack()
idx = stacked.index
with tm.assert_raises_regex(TypeError, '^Level type mismatch'):
idx.slice_locs(timedelta(seconds=30))
# TODO: Try creating a UnicodeDecodeError in exception message
with tm.assert_raises_regex(TypeError, '^Level type mismatch'):
idx.slice_locs(df.index[1], (16, "a"))
示例6: test_basic_frame_alignment
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeCustomDataframe [as 別名]
def test_basic_frame_alignment(self, engine, parser):
args = product(self.lhs_index_types, self.index_types,
self.index_types)
with warnings.catch_warnings(record=True):
warnings.simplefilter('always', RuntimeWarning)
for lr_idx_type, rr_idx_type, c_idx_type in args:
df = mkdf(10, 10, data_gen_f=f, r_idx_type=lr_idx_type,
c_idx_type=c_idx_type)
df2 = mkdf(20, 10, data_gen_f=f, r_idx_type=rr_idx_type,
c_idx_type=c_idx_type)
# only warns if not monotonic and not sortable
if should_warn(df.index, df2.index):
with tm.assert_produces_warning(RuntimeWarning):
res = pd.eval('df + df2', engine=engine, parser=parser)
else:
res = pd.eval('df + df2', engine=engine, parser=parser)
assert_frame_equal(res, df + df2)
示例7: test_medium_complex_frame_alignment
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeCustomDataframe [as 別名]
def test_medium_complex_frame_alignment(self, engine, parser):
args = product(self.lhs_index_types, self.index_types,
self.index_types, self.index_types)
with warnings.catch_warnings(record=True):
warnings.simplefilter('always', RuntimeWarning)
for r1, c1, r2, c2 in args:
df = mkdf(3, 2, data_gen_f=f, r_idx_type=r1, c_idx_type=c1)
df2 = mkdf(4, 2, data_gen_f=f, r_idx_type=r2, c_idx_type=c2)
df3 = mkdf(5, 2, data_gen_f=f, r_idx_type=r2, c_idx_type=c2)
if should_warn(df.index, df2.index, df3.index):
with tm.assert_produces_warning(RuntimeWarning):
res = pd.eval('df + df2 + df3', engine=engine,
parser=parser)
else:
res = pd.eval('df + df2 + df3',
engine=engine, parser=parser)
assert_frame_equal(res, df + df2 + df3)
示例8: test_basic_frame_series_alignment
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeCustomDataframe [as 別名]
def test_basic_frame_series_alignment(self, engine, parser):
def testit(r_idx_type, c_idx_type, index_name):
df = mkdf(10, 10, data_gen_f=f, r_idx_type=r_idx_type,
c_idx_type=c_idx_type)
index = getattr(df, index_name)
s = Series(np.random.randn(5), index[:5])
if should_warn(df.index, s.index):
with tm.assert_produces_warning(RuntimeWarning):
res = pd.eval('df + s', engine=engine, parser=parser)
else:
res = pd.eval('df + s', engine=engine, parser=parser)
if r_idx_type == 'dt' or c_idx_type == 'dt':
expected = df.add(s) if engine == 'numexpr' else df + s
else:
expected = df + s
assert_frame_equal(res, expected)
args = product(self.lhs_index_types, self.index_types,
('index', 'columns'))
with warnings.catch_warnings(record=True):
warnings.simplefilter('always', RuntimeWarning)
for r_idx_type, c_idx_type, index_name in args:
testit(r_idx_type, c_idx_type, index_name)
示例9: check_basic_frame_series_alignment
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeCustomDataframe [as 別名]
def check_basic_frame_series_alignment(self, engine, parser):
tm.skip_if_no_ne(engine)
def testit(r_idx_type, c_idx_type, index_name):
df = mkdf(10, 10, data_gen_f=f, r_idx_type=r_idx_type,
c_idx_type=c_idx_type)
index = getattr(df, index_name)
s = Series(np.random.randn(5), index[:5])
res = pd.eval('df + s', engine=engine, parser=parser)
if r_idx_type == 'dt' or c_idx_type == 'dt':
if engine == 'numexpr':
expected = df.add(s)
else:
expected = df + s
else:
expected = df + s
assert_frame_equal(res, expected)
args = product(self.lhs_index_types, self.index_types,
('index', 'columns'))
for r_idx_type, c_idx_type, index_name in args:
testit(r_idx_type, c_idx_type, index_name)
示例10: check_series_frame_commutativity
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeCustomDataframe [as 別名]
def check_series_frame_commutativity(self, engine, parser):
tm.skip_if_no_ne(engine)
args = product(self.lhs_index_types, self.index_types, ('+', '*'),
('index', 'columns'))
for r_idx_type, c_idx_type, op, index_name in args:
df = mkdf(10, 10, data_gen_f=f, r_idx_type=r_idx_type,
c_idx_type=c_idx_type)
index = getattr(df, index_name)
s = Series(np.random.randn(5), index[:5])
lhs = 's {0} df'.format(op)
rhs = 'df {0} s'.format(op)
a = pd.eval(lhs, engine=engine, parser=parser)
b = pd.eval(rhs, engine=engine, parser=parser)
if r_idx_type != 'dt' and c_idx_type != 'dt':
if engine == 'numexpr':
assert_frame_equal(a, b)
示例11: setUpClass
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeCustomDataframe [as 別名]
def setUpClass(cls):
super(TestClipboard, cls).setUpClass()
cls.data = {}
cls.data['string'] = mkdf(5, 3, c_idx_type='s', r_idx_type='i',
c_idx_names=[None], r_idx_names=[None])
cls.data['int'] = mkdf(5, 3, data_gen_f=lambda *args: randint(2),
c_idx_type='s', r_idx_type='i',
c_idx_names=[None], r_idx_names=[None])
cls.data['float'] = mkdf(5, 3,
data_gen_f=lambda r, c: float(r) + 0.01,
c_idx_type='s', r_idx_type='i',
c_idx_names=[None], r_idx_names=[None])
cls.data['mixed'] = DataFrame({'a': np.arange(1.0, 6.0) + 0.01,
'b': np.arange(1, 6),
'c': list('abcde')})
# Test GH-5346
max_rows = get_option('display.max_rows')
cls.data['longdf'] = mkdf(max_rows+1, 3, data_gen_f=lambda *args: randint(2),
c_idx_type='s', r_idx_type='i',
c_idx_names=[None], r_idx_names=[None])
cls.data_types = list(cls.data.keys())
示例12: test_does_not_convert_mixed_integer
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeCustomDataframe [as 別名]
def test_does_not_convert_mixed_integer(self):
df = tm.makeCustomDataframe(10, 10,
data_gen_f=lambda *args, **kwargs: randn(),
r_idx_type='i', c_idx_type='td')
str(df)
cols = df.columns.join(df.index, how='outer')
joined = cols.join(df.columns)
assert cols.dtype == np.dtype('O')
assert cols.dtype == joined.dtype
tm.assert_index_equal(cols, joined)
示例13: test_does_not_convert_mixed_integer
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeCustomDataframe [as 別名]
def test_does_not_convert_mixed_integer(self):
df = tm.makeCustomDataframe(10, 10,
data_gen_f=lambda *args, **kwargs: randn(),
r_idx_type='i', c_idx_type='dt')
cols = df.columns.join(df.index, how='outer')
joined = cols.join(df.columns)
assert cols.dtype == np.dtype('O')
assert cols.dtype == joined.dtype
tm.assert_numpy_array_equal(cols.values, joined.values)
示例14: test_join_with_period_index
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeCustomDataframe [as 別名]
def test_join_with_period_index(self, join_type):
df = tm.makeCustomDataframe(
10, 10, data_gen_f=lambda *args: np.random.randint(2),
c_idx_type='p', r_idx_type='dt')
s = df.iloc[:5, 0]
msg = 'can only call with other PeriodIndex-ed objects'
with pytest.raises(ValueError, match=msg):
df.columns.join(s.index, how=join_type)
示例15: test_join_does_not_recur
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import makeCustomDataframe [as 別名]
def test_join_does_not_recur(self):
df = tm.makeCustomDataframe(
3, 2, data_gen_f=lambda *args: np.random.randint(2),
c_idx_type='p', r_idx_type='dt')
s = df.iloc[:2, 0]
res = s.index.join(df.columns, how='outer')
expected = Index([s.index[0], s.index[1],
df.columns[0], df.columns[1]], object)
tm.assert_index_equal(res, expected)