本文整理匯總了Python中pandas.util.testing.ensure_clean方法的典型用法代碼示例。如果您正苦於以下問題:Python testing.ensure_clean方法的具體用法?Python testing.ensure_clean怎麽用?Python testing.ensure_clean使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.util.testing
的用法示例。
在下文中一共展示了testing.ensure_clean方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_read_write_dta10
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import ensure_clean [as 別名]
def test_read_write_dta10(self, version):
original = DataFrame(data=[["string", "object", 1, 1.1,
np.datetime64('2003-12-25')]],
columns=['string', 'object', 'integer',
'floating', 'datetime'])
original["object"] = Series(original["object"], dtype=object)
original.index.name = 'index'
original.index = original.index.astype(np.int32)
original['integer'] = original['integer'].astype(np.int32)
with tm.ensure_clean() as path:
original.to_stata(path, {'datetime': 'tc'}, version=version)
written_and_read_again = self.read_dta(path)
# original.index is np.int32, read index is np.int64
tm.assert_frame_equal(written_and_read_again.set_index('index'),
original, check_index_type=False)
示例2: test_encoding
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import ensure_clean [as 別名]
def test_encoding(self, version):
# GH 4626, proper encoding handling
raw = read_stata(self.dta_encoding)
with tm.assert_produces_warning(FutureWarning):
encoded = read_stata(self.dta_encoding, encoding='latin-1')
result = encoded.kreis1849[0]
expected = raw.kreis1849[0]
assert result == expected
assert isinstance(result, compat.string_types)
with tm.ensure_clean() as path:
with tm.assert_produces_warning(FutureWarning):
encoded.to_stata(path, write_index=False, version=version,
encoding='latin-1')
reread_encoded = read_stata(path)
tm.assert_frame_equal(encoded, reread_encoded)
示例3: test_read_write_dta11
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import ensure_clean [as 別名]
def test_read_write_dta11(self):
original = DataFrame([(1, 2, 3, 4)],
columns=['good', compat.u('b\u00E4d'), '8number',
'astringwithmorethan32characters______'])
formatted = DataFrame([(1, 2, 3, 4)],
columns=['good', 'b_d', '_8number',
'astringwithmorethan32characters_'])
formatted.index.name = 'index'
formatted = formatted.astype(np.int32)
with tm.ensure_clean() as path:
with tm.assert_produces_warning(pd.io.stata.InvalidColumnName):
original.to_stata(path, None)
written_and_read_again = self.read_dta(path)
tm.assert_frame_equal(
written_and_read_again.set_index('index'), formatted)
示例4: test_read_write_reread_dta14
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import ensure_clean [as 別名]
def test_read_write_reread_dta14(self, file, parsed_114, version):
file = getattr(self, file)
parsed = self.read_dta(file)
parsed.index.name = 'index'
expected = self.read_csv(self.csv14)
cols = ['byte_', 'int_', 'long_', 'float_', 'double_']
for col in cols:
expected[col] = expected[col]._convert(datetime=True, numeric=True)
expected['float_'] = expected['float_'].astype(np.float32)
expected['date_td'] = pd.to_datetime(
expected['date_td'], errors='coerce')
tm.assert_frame_equal(parsed_114, parsed)
with tm.ensure_clean() as path:
parsed_114.to_stata(path, {'date_td': 'td'}, version=version)
written_and_read_again = self.read_dta(path)
tm.assert_frame_equal(
written_and_read_again.set_index('index'), parsed_114)
示例5: test_large_value_conversion
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import ensure_clean [as 別名]
def test_large_value_conversion(self):
s0 = Series([1, 99], dtype=np.int8)
s1 = Series([1, 127], dtype=np.int8)
s2 = Series([1, 2 ** 15 - 1], dtype=np.int16)
s3 = Series([1, 2 ** 63 - 1], dtype=np.int64)
original = DataFrame({'s0': s0, 's1': s1, 's2': s2, 's3': s3})
original.index.name = 'index'
with tm.ensure_clean() as path:
with tm.assert_produces_warning(PossiblePrecisionLoss):
original.to_stata(path)
written_and_read_again = self.read_dta(path)
modified = original.copy()
modified['s1'] = Series(modified['s1'], dtype=np.int16)
modified['s2'] = Series(modified['s2'], dtype=np.int32)
modified['s3'] = Series(modified['s3'], dtype=np.float64)
tm.assert_frame_equal(written_and_read_again.set_index('index'),
modified)
示例6: test_date_export_formats
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import ensure_clean [as 別名]
def test_date_export_formats(self):
columns = ['tc', 'td', 'tw', 'tm', 'tq', 'th', 'ty']
conversions = {c: c for c in columns}
data = [datetime(2006, 11, 20, 23, 13, 20)] * len(columns)
original = DataFrame([data], columns=columns)
original.index.name = 'index'
expected_values = [datetime(2006, 11, 20, 23, 13, 20), # Time
datetime(2006, 11, 20), # Day
datetime(2006, 11, 19), # Week
datetime(2006, 11, 1), # Month
datetime(2006, 10, 1), # Quarter year
datetime(2006, 7, 1), # Half year
datetime(2006, 1, 1)] # Year
expected = DataFrame([expected_values], columns=columns)
expected.index.name = 'index'
with tm.ensure_clean() as path:
original.to_stata(path, conversions)
written_and_read_again = self.read_dta(path)
tm.assert_frame_equal(written_and_read_again.set_index('index'),
expected)
示例7: test_bool_uint
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import ensure_clean [as 別名]
def test_bool_uint(self, byteorder, version):
s0 = Series([0, 1, True], dtype=np.bool)
s1 = Series([0, 1, 100], dtype=np.uint8)
s2 = Series([0, 1, 255], dtype=np.uint8)
s3 = Series([0, 1, 2 ** 15 - 100], dtype=np.uint16)
s4 = Series([0, 1, 2 ** 16 - 1], dtype=np.uint16)
s5 = Series([0, 1, 2 ** 31 - 100], dtype=np.uint32)
s6 = Series([0, 1, 2 ** 32 - 1], dtype=np.uint32)
original = DataFrame({'s0': s0, 's1': s1, 's2': s2, 's3': s3,
's4': s4, 's5': s5, 's6': s6})
original.index.name = 'index'
expected = original.copy()
expected_types = (np.int8, np.int8, np.int16, np.int16, np.int32,
np.int32, np.float64)
for c, t in zip(expected.columns, expected_types):
expected[c] = expected[c].astype(t)
with tm.ensure_clean() as path:
original.to_stata(path, byteorder=byteorder, version=version)
written_and_read_again = self.read_dta(path)
written_and_read_again = written_and_read_again.set_index('index')
tm.assert_frame_equal(written_and_read_again, expected)
示例8: test_minimal_size_col
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import ensure_clean [as 別名]
def test_minimal_size_col(self):
str_lens = (1, 100, 244)
s = {}
for str_len in str_lens:
s['s' + str(str_len)] = Series(['a' * str_len,
'b' * str_len, 'c' * str_len])
original = DataFrame(s)
with tm.ensure_clean() as path:
original.to_stata(path, write_index=False)
with StataReader(path) as sr:
typlist = sr.typlist
variables = sr.varlist
formats = sr.fmtlist
for variable, fmt, typ in zip(variables, formats, typlist):
assert int(variable[1:]) == int(fmt[1:-1])
assert int(variable[1:]) == typ
示例9: test_invalid_variable_labels
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import ensure_clean [as 別名]
def test_invalid_variable_labels(self, version):
original = pd.DataFrame({'a': [1, 2, 3, 4],
'b': [1.0, 3.0, 27.0, 81.0],
'c': ['Atlanta', 'Birmingham',
'Cincinnati', 'Detroit']})
original.index.name = 'index'
variable_labels = {'a': 'very long' * 10,
'b': 'City Exponent',
'c': 'City'}
with tm.ensure_clean() as path:
msg = "Variable labels must be 80 characters or fewer"
with pytest.raises(ValueError, match=msg):
original.to_stata(path,
variable_labels=variable_labels,
version=version)
variable_labels['a'] = u'invalid character Œ'
with tm.ensure_clean() as path:
msg = ("Variable labels must contain only characters that can be"
" encoded in Latin-1")
with pytest.raises(ValueError, match=msg):
original.to_stata(path,
variable_labels=variable_labels,
version=version)
示例10: test_unsupported_datetype
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import ensure_clean [as 別名]
def test_unsupported_datetype(self):
dates = [dt.datetime(1999, 12, 31, 12, 12, 12, 12000),
dt.datetime(2012, 12, 21, 12, 21, 12, 21000),
dt.datetime(1776, 7, 4, 7, 4, 7, 4000)]
original = pd.DataFrame({'nums': [1.0, 2.0, 3.0],
'strs': ['apple', 'banana', 'cherry'],
'dates': dates})
msg = "Format %tC not implemented"
with pytest.raises(NotImplementedError, match=msg):
with tm.ensure_clean() as path:
original.to_stata(path, convert_dates={'dates': 'tC'})
dates = pd.date_range('1-1-1990', periods=3, tz='Asia/Hong_Kong')
original = pd.DataFrame({'nums': [1.0, 2.0, 3.0],
'strs': ['apple', 'banana', 'cherry'],
'dates': dates})
with pytest.raises(NotImplementedError):
with tm.ensure_clean() as path:
original.to_stata(path)
示例11: test_out_of_range_double
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import ensure_clean [as 別名]
def test_out_of_range_double(self):
# GH 14618
df = DataFrame({'ColumnOk': [0.0,
np.finfo(np.double).eps,
4.49423283715579e+307],
'ColumnTooBig': [0.0,
np.finfo(np.double).eps,
np.finfo(np.double).max]})
msg = (r"Column ColumnTooBig has a maximum value \(.+\)"
r" outside the range supported by Stata \(.+\)")
with pytest.raises(ValueError, match=msg):
with tm.ensure_clean() as path:
df.to_stata(path)
df.loc[2, 'ColumnTooBig'] = np.inf
msg = ("Column ColumnTooBig has a maximum value of infinity which"
" is outside the range supported by Stata")
with pytest.raises(ValueError, match=msg):
with tm.ensure_clean() as path:
df.to_stata(path)
示例12: test_out_of_range_float
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import ensure_clean [as 別名]
def test_out_of_range_float(self):
original = DataFrame({'ColumnOk': [0.0,
np.finfo(np.float32).eps,
np.finfo(np.float32).max / 10.0],
'ColumnTooBig': [0.0,
np.finfo(np.float32).eps,
np.finfo(np.float32).max]})
original.index.name = 'index'
for col in original:
original[col] = original[col].astype(np.float32)
with tm.ensure_clean() as path:
original.to_stata(path)
reread = read_stata(path)
original['ColumnTooBig'] = original['ColumnTooBig'].astype(
np.float64)
tm.assert_frame_equal(original,
reread.set_index('index'))
original.loc[2, 'ColumnTooBig'] = np.inf
msg = ("Column ColumnTooBig has a maximum value of infinity which"
" is outside the range supported by Stata")
with pytest.raises(ValueError, match=msg):
with tm.ensure_clean() as path:
original.to_stata(path)
示例13: test_all_none_exception
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import ensure_clean [as 別名]
def test_all_none_exception(self, version):
output = [
{'none': 'none',
'number': 0},
{'none': None,
'number': 1}
]
output = pd.DataFrame(output)
output.loc[:, 'none'] = None
with tm.ensure_clean() as path:
msg = (r"Column `none` cannot be exported\.\n\n"
"Only string-like object arrays containing all strings or a"
r" mix of strings and None can be exported\. Object arrays"
r" containing only null values are prohibited\. Other"
" object typescannot be exported and must first be"
r" converted to one of the supported types\.")
with pytest.raises(ValueError, match=msg):
output.to_stata(path, version=version)
示例14: test_strl_latin1
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import ensure_clean [as 別名]
def test_strl_latin1(self):
# GH 23573, correct GSO data to reflect correct size
output = DataFrame([[u'pandas'] * 2, [u'þâÑÐŧ'] * 2],
columns=['var_str', 'var_strl'])
with tm.ensure_clean() as path:
output.to_stata(path, version=117, convert_strl=['var_strl'])
with open(path, 'rb') as reread:
content = reread.read()
expected = u'þâÑÐŧ'
assert expected.encode('latin-1') in content
assert expected.encode('utf-8') in content
gsos = content.split(b'strls')[1][1:-2]
for gso in gsos.split(b'GSO')[1:]:
val = gso.split(b'\x00')[-2]
size = gso[gso.find(b'\x82') + 1]
if not PY3:
size = ord(size)
assert len(val) == size - 1
示例15: test_to_latex_filename
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import ensure_clean [as 別名]
def test_to_latex_filename(self, frame):
with tm.ensure_clean('test.tex') as path:
frame.to_latex(path)
with open(path, 'r') as f:
assert frame.to_latex() == f.read()
# test with utf-8 and encoding option (GH 7061)
df = DataFrame([[u'au\xdfgangen']])
with tm.ensure_clean('test.tex') as path:
df.to_latex(path, encoding='utf-8')
with codecs.open(path, 'r', encoding='utf-8') as f:
assert df.to_latex() == f.read()
# test with utf-8 without encoding option
if compat.PY3: # python3: pandas default encoding is utf-8
with tm.ensure_clean('test.tex') as path:
df.to_latex(path)
with codecs.open(path, 'r', encoding='utf-8') as f:
assert df.to_latex() == f.read()
else:
# python2 default encoding is ascii, so an error should be raised
with tm.ensure_clean('test.tex') as path:
with pytest.raises(UnicodeEncodeError):
df.to_latex(path)