當前位置: 首頁>>代碼示例>>Python>>正文


Python testing.assert_sp_array_equal方法代碼示例

本文整理匯總了Python中pandas.util.testing.assert_sp_array_equal方法的典型用法代碼示例。如果您正苦於以下問題:Python testing.assert_sp_array_equal方法的具體用法?Python testing.assert_sp_array_equal怎麽用?Python testing.assert_sp_array_equal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pandas.util.testing的用法示例。


在下文中一共展示了testing.assert_sp_array_equal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_dropna

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_sp_array_equal [as 別名]
def test_dropna(self):
        sp = SparseSeries([0, 0, 0, nan, nan, 5, 6], fill_value=0)

        sp_valid = sp.dropna()

        expected = sp.to_dense().dropna()
        expected = expected[expected != 0]
        exp_arr = pd.SparseArray(expected.values, fill_value=0, kind='block')
        tm.assert_sp_array_equal(sp_valid.values, exp_arr)
        tm.assert_index_equal(sp_valid.index, expected.index)
        assert len(sp_valid.sp_values) == 2

        result = self.bseries.dropna()
        expected = self.bseries.to_dense().dropna()
        assert not isinstance(result, SparseSeries)
        tm.assert_series_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_series.py

示例2: test_take_filling_all_nan

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_sp_array_equal [as 別名]
def test_take_filling_all_nan(self):
        sparse = SparseArray([np.nan, np.nan, np.nan, np.nan, np.nan])
        # XXX: did the default kind from take change?
        result = sparse.take(np.array([1, 0, -1]))
        expected = SparseArray([np.nan, np.nan, np.nan], kind='block')
        tm.assert_sp_array_equal(result, expected)

        result = sparse.take(np.array([1, 0, -1]), fill_value=True)
        expected = SparseArray([np.nan, np.nan, np.nan], kind='block')
        tm.assert_sp_array_equal(result, expected)

        with pytest.raises(IndexError):
            sparse.take(np.array([1, -6]))
        with pytest.raises(IndexError):
            sparse.take(np.array([1, 5]))
        with pytest.raises(IndexError):
            sparse.take(np.array([1, 5]), fill_value=True) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:19,代碼來源:test_array.py

示例3: test_astype

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_sp_array_equal [as 別名]
def test_astype(self):
        # float -> float
        arr = SparseArray([None, None, 0, 2])
        result = arr.astype("Sparse[float32]")
        expected = SparseArray([None, None, 0, 2], dtype=np.dtype('float32'))
        tm.assert_sp_array_equal(result, expected)

        dtype = SparseDtype("float64", fill_value=0)
        result = arr.astype(dtype)
        expected = SparseArray._simple_new(np.array([0., 2.],
                                                    dtype=dtype.subtype),
                                           IntIndex(4, [2, 3]),
                                           dtype)
        tm.assert_sp_array_equal(result, expected)

        dtype = SparseDtype("int64", 0)
        result = arr.astype(dtype)
        expected = SparseArray._simple_new(np.array([0, 2], dtype=np.int64),
                                           IntIndex(4, [2, 3]),
                                           dtype)
        tm.assert_sp_array_equal(result, expected)

        arr = SparseArray([0, np.nan, 0, 1], fill_value=0)
        with pytest.raises(ValueError, match='NA'):
            arr.astype('Sparse[i8]') 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:27,代碼來源:test_array.py

示例4: test_getslice_tuple

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_sp_array_equal [as 別名]
def test_getslice_tuple(self):
        dense = np.array([np.nan, 0, 3, 4, 0, 5, np.nan, np.nan, 0])

        sparse = SparseArray(dense)
        res = sparse[4:, ]
        exp = SparseArray(dense[4:, ])
        tm.assert_sp_array_equal(res, exp)

        sparse = SparseArray(dense, fill_value=0)
        res = sparse[4:, ]
        exp = SparseArray(dense[4:, ], fill_value=0)
        tm.assert_sp_array_equal(res, exp)

        with pytest.raises(IndexError):
            sparse[4:, :]

        with pytest.raises(IndexError):
            # check numpy compat
            dense[4:, :] 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:21,代碼來源:test_array.py

示例5: test_map

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_sp_array_equal [as 別名]
def test_map():
    arr = SparseArray([0, 1, 2])
    expected = SparseArray([10, 11, 12], fill_value=10)

    # dict
    result = arr.map({0: 10, 1: 11, 2: 12})
    tm.assert_sp_array_equal(result, expected)

    # series
    result = arr.map(pd.Series({0: 10, 1: 11, 2: 12}))
    tm.assert_sp_array_equal(result, expected)

    # function
    result = arr.map(pd.Series({0: 10, 1: 11, 2: 12}))
    expected = SparseArray([10, 11, 12], fill_value=10)
    tm.assert_sp_array_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_array.py

示例6: test_sparseseries_roundtrip

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_sp_array_equal [as 別名]
def test_sparseseries_roundtrip(self):
        # GH 13999
        for kind in ['integer', 'block']:
            for fill in [1, np.nan, 0]:
                arr = SparseArray([np.nan, 1, np.nan, 2, 3], kind=kind,
                                  fill_value=fill)
                res = SparseArray(SparseSeries(arr))
                tm.assert_sp_array_equal(arr, res)

                arr = SparseArray([0, 0, 0, 1, 1, 2], dtype=np.int64,
                                  kind=kind, fill_value=fill)
                res = SparseArray(SparseSeries(arr), dtype=np.int64)
                tm.assert_sp_array_equal(arr, res)

                res = SparseArray(SparseSeries(arr))
                tm.assert_sp_array_equal(arr, res)

            for fill in [True, False, np.nan]:
                arr = SparseArray([True, False, True, True], dtype=np.bool,
                                  kind=kind, fill_value=fill)
                res = SparseArray(SparseSeries(arr))
                tm.assert_sp_array_equal(arr, res)

                res = SparseArray(SparseSeries(arr))
                tm.assert_sp_array_equal(arr, res) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:27,代碼來源:test_array.py

示例7: test_take_filling_all_nan

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_sp_array_equal [as 別名]
def test_take_filling_all_nan(self):
        sparse = SparseArray([np.nan, np.nan, np.nan, np.nan, np.nan])
        result = sparse.take(np.array([1, 0, -1]))
        expected = SparseArray([np.nan, np.nan, np.nan])
        tm.assert_sp_array_equal(result, expected)

        result = sparse.take(np.array([1, 0, -1]), fill_value=True)
        expected = SparseArray([np.nan, np.nan, np.nan])
        tm.assert_sp_array_equal(result, expected)

        with pytest.raises(IndexError):
            sparse.take(np.array([1, -6]))
        with pytest.raises(IndexError):
            sparse.take(np.array([1, 5]))
        with pytest.raises(IndexError):
            sparse.take(np.array([1, 5]), fill_value=True) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:18,代碼來源:test_array.py

示例8: tests_indexing_with_sparse

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_sp_array_equal [as 別名]
def tests_indexing_with_sparse(self, kind, fill):
        # see gh-13985
        arr = pd.SparseArray([1, 2, 3], kind=kind)
        indexer = pd.SparseArray([True, False, True],
                                 fill_value=fill,
                                 dtype=bool)

        expected = arr[indexer]
        result = pd.SparseArray([1, 3], kind=kind)
        tm.assert_sp_array_equal(result, expected)

        s = pd.SparseSeries(arr, index=["a", "b", "c"], dtype=np.float64)
        expected = pd.SparseSeries([1, 3], index=["a", "c"], kind=kind,
                                   dtype=SparseDtype(np.float64, s.fill_value))

        tm.assert_sp_series_equal(s[indexer], expected)
        tm.assert_sp_series_equal(s.loc[indexer], expected)
        tm.assert_sp_series_equal(s.iloc[indexer], expected)

        indexer = pd.SparseSeries(indexer, index=["a", "b", "c"])
        tm.assert_sp_series_equal(s[indexer], expected)
        tm.assert_sp_series_equal(s.loc[indexer], expected)

        msg = ("iLocation based boolean indexing cannot "
               "use an indexable as a mask")
        with pytest.raises(ValueError, match=msg):
            s.iloc[indexer] 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:29,代碼來源:test_indexing.py

示例9: test_to_sparse

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_sp_array_equal [as 別名]
def test_to_sparse():
    # https://github.com/pandas-dev/pandas/issues/22389
    arr = pd.SparseArray([1, 2, None, 3])
    result = pd.Series(arr).to_sparse()
    assert len(result) == 4
    tm.assert_sp_array_equal(result.values, arr, check_kind=False) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:8,代碼來源:test_series.py

示例10: test_with_list

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_sp_array_equal [as 別名]
def test_with_list(op):
    arr = pd.SparseArray([0, 1], fill_value=0)
    result = op(arr, [0, 1])
    expected = op(arr, pd.SparseArray([0, 1]))
    tm.assert_sp_array_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:7,代碼來源:test_arithmetics.py

示例11: test_sparray_inplace

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_sp_array_equal [as 別名]
def test_sparray_inplace():
    sparray = pd.SparseArray([0, 2, 0, 0])
    ndarray = np.array([0, 1, 2, 3])
    sparray += ndarray
    expected = pd.SparseArray([0, 3, 2, 3], fill_value=0)
    tm.assert_sp_array_equal(sparray, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:8,代碼來源:test_arithmetics.py

示例12: test_invert

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_sp_array_equal [as 別名]
def test_invert(fill_value):
    arr = np.array([True, False, False, True])
    sparray = pd.SparseArray(arr, fill_value=fill_value)
    result = ~sparray
    expected = pd.SparseArray(~arr, fill_value=not fill_value)
    tm.assert_sp_array_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:8,代碼來源:test_arithmetics.py

示例13: test_unary_op

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_sp_array_equal [as 別名]
def test_unary_op(op, fill_value):
    arr = np.array([0, 1, np.nan, 2])
    sparray = pd.SparseArray(arr, fill_value=fill_value)
    result = op(sparray)
    expected = pd.SparseArray(op(arr), fill_value=op(fill_value))
    tm.assert_sp_array_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:8,代碼來源:test_arithmetics.py

示例14: test_constructor_dtype_str

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_sp_array_equal [as 別名]
def test_constructor_dtype_str(self):
        result = SparseArray([1, 2, 3], dtype='int')
        expected = SparseArray([1, 2, 3], dtype=int)
        tm.assert_sp_array_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:6,代碼來源:test_array.py

示例15: test_constructor_sparse_dtype

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_sp_array_equal [as 別名]
def test_constructor_sparse_dtype(self):
        result = SparseArray([1, 0, 0, 1], dtype=SparseDtype('int64', -1))
        expected = SparseArray([1, 0, 0, 1], fill_value=-1, dtype=np.int64)
        tm.assert_sp_array_equal(result, expected)
        assert result.sp_values.dtype == np.dtype('int64') 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:7,代碼來源:test_array.py


注:本文中的pandas.util.testing.assert_sp_array_equal方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。