本文整理匯總了Python中pandas.util.testing.assert_series_equal方法的典型用法代碼示例。如果您正苦於以下問題:Python testing.assert_series_equal方法的具體用法?Python testing.assert_series_equal怎麽用?Python testing.assert_series_equal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.util.testing
的用法示例。
在下文中一共展示了testing.assert_series_equal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_isna
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_series_equal [as 別名]
def test_isna(self, data_missing):
expected_dtype = SparseDtype(bool,
pd.isna(data_missing.dtype.fill_value))
expected = SparseArray([True, False], dtype=expected_dtype)
result = pd.isna(data_missing)
self.assert_equal(result, expected)
result = pd.Series(data_missing).isna()
expected = pd.Series(expected)
self.assert_series_equal(result, expected)
# GH 21189
result = pd.Series(data_missing).drop([0, 1]).isna()
expected = pd.Series([], dtype=expected_dtype)
self.assert_series_equal(result, expected)
示例2: test_combine_le
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_series_equal [as 別名]
def test_combine_le(self, data_repeated):
# We return a Series[SparseArray].__le__ returns a
# Series[Sparse[bool]]
# rather than Series[bool]
orig_data1, orig_data2 = data_repeated(2)
s1 = pd.Series(orig_data1)
s2 = pd.Series(orig_data2)
result = s1.combine(s2, lambda x1, x2: x1 <= x2)
expected = pd.Series(pd.SparseArray([
a <= b for (a, b) in
zip(list(orig_data1), list(orig_data2))
], fill_value=False))
self.assert_series_equal(result, expected)
val = s1.iloc[0]
result = s1.combine(val, lambda x1, x2: x1 <= x2)
expected = pd.Series(pd.SparseArray([
a <= val for a in list(orig_data1)
], fill_value=False))
self.assert_series_equal(result, expected)
示例3: test_where_series
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_series_equal [as 別名]
def test_where_series(self, data, na_value):
assert data[0] != data[1]
cls = type(data)
a, b = data[:2]
ser = pd.Series(cls._from_sequence([a, a, b, b], dtype=data.dtype))
cond = np.array([True, True, False, False])
result = ser.where(cond)
new_dtype = SparseDtype('float', 0.0)
expected = pd.Series(cls._from_sequence([a, a, na_value, na_value],
dtype=new_dtype))
self.assert_series_equal(result, expected)
other = cls._from_sequence([a, b, a, b], dtype=data.dtype)
cond = np.array([True, False, True, True])
result = ser.where(cond, other)
expected = pd.Series(cls._from_sequence([a, b, b, b],
dtype=data.dtype))
self.assert_series_equal(result, expected)
示例4: _compare_other
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_series_equal [as 別名]
def _compare_other(self, s, data, op_name, other):
op = self.get_op_from_name(op_name)
# array
result = pd.Series(op(data, other))
# hard to test the fill value, since we don't know what expected
# is in general.
# Rely on tests in `tests/sparse` to validate that.
assert isinstance(result.dtype, SparseDtype)
assert result.dtype.subtype == np.dtype('bool')
with np.errstate(all='ignore'):
expected = pd.Series(
pd.SparseArray(op(np.asarray(data), np.asarray(other)),
fill_value=result.values.fill_value)
)
tm.assert_series_equal(result, expected)
# series
s = pd.Series(data)
result = op(s, other)
tm.assert_series_equal(result, expected)
示例5: test_custom_asserts
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_series_equal [as 別名]
def test_custom_asserts(self):
# This would always trigger the KeyError from trying to put
# an array of equal-length UserDicts inside an ndarray.
data = JSONArray([collections.UserDict({'a': 1}),
collections.UserDict({'b': 2}),
collections.UserDict({'c': 3})])
a = pd.Series(data)
self.assert_series_equal(a, a)
self.assert_frame_equal(a.to_frame(), a.to_frame())
b = pd.Series(data.take([0, 0, 1]))
with pytest.raises(AssertionError):
self.assert_series_equal(a, b)
with pytest.raises(AssertionError):
self.assert_frame_equal(a.to_frame(), b.to_frame())
示例6: assert_series_equal
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_series_equal [as 別名]
def assert_series_equal(self, left, right, *args, **kwargs):
def convert(x):
# need to convert array([Decimal(NaN)], dtype='object') to np.NaN
# because Series[object].isnan doesn't recognize decimal(NaN) as
# NA.
try:
return math.isnan(x)
except TypeError:
return False
if left.dtype == 'object':
left_na = left.apply(convert)
else:
left_na = left.isna()
if right.dtype == 'object':
right_na = right.apply(convert)
else:
right_na = right.isna()
tm.assert_series_equal(left_na, right_na)
return tm.assert_series_equal(left[~left_na],
right[~right_na],
*args, **kwargs)
示例7: assert_frame_equal
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_series_equal [as 別名]
def assert_frame_equal(self, left, right, *args, **kwargs):
# TODO(EA): select_dtypes
tm.assert_index_equal(
left.columns, right.columns,
exact=kwargs.get('check_column_type', 'equiv'),
check_names=kwargs.get('check_names', True),
check_exact=kwargs.get('check_exact', False),
check_categorical=kwargs.get('check_categorical', True),
obj='{obj}.columns'.format(obj=kwargs.get('obj', 'DataFrame')))
decimals = (left.dtypes == 'decimal').index
for col in decimals:
self.assert_series_equal(left[col], right[col],
*args, **kwargs)
left = left.drop(columns=decimals)
right = right.drop(columns=decimals)
tm.assert_frame_equal(left, right, *args, **kwargs)
示例8: test_cmov_window_special_linear_range
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_series_equal [as 別名]
def test_cmov_window_special_linear_range(self, win_types_special):
# GH 8238
kwds = {
'kaiser': {'beta': 1.},
'gaussian': {'std': 1.},
'general_gaussian': {'power': 2., 'width': 2.},
'slepian': {'width': 0.5}}
vals = np.array(range(10), dtype=np.float)
xp = vals.copy()
xp[:2] = np.nan
xp[-2:] = np.nan
xp = Series(xp)
rs = Series(vals).rolling(
5, win_type=win_types_special, center=True).mean(
**kwds[win_types_special])
tm.assert_series_equal(xp, rs)
示例9: test_expanding_cov_diff_index
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_series_equal [as 別名]
def test_expanding_cov_diff_index(self):
# GH 7512
s1 = Series([1, 2, 3], index=[0, 1, 2])
s2 = Series([1, 3], index=[0, 2])
result = s1.expanding().cov(s2)
expected = Series([None, None, 2.0])
tm.assert_series_equal(result, expected)
s2a = Series([1, None, 3], index=[0, 1, 2])
result = s1.expanding().cov(s2a)
tm.assert_series_equal(result, expected)
s1 = Series([7, 8, 10], index=[0, 1, 3])
s2 = Series([7, 9, 10], index=[0, 2, 3])
result = s1.expanding().cov(s2)
expected = Series([None, None, None, 4.5])
tm.assert_series_equal(result, expected)
示例10: test_rolling_functions_window_non_shrinkage
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_series_equal [as 別名]
def test_rolling_functions_window_non_shrinkage(self, f):
# GH 7764
s = Series(range(4))
s_expected = Series(np.nan, index=s.index)
df = DataFrame([[1, 5], [3, 2], [3, 9], [-1, 0]], columns=['A', 'B'])
df_expected = DataFrame(np.nan, index=df.index, columns=df.columns)
try:
s_result = f(s)
tm.assert_series_equal(s_result, s_expected)
df_result = f(df)
tm.assert_frame_equal(df_result, df_expected)
except (ImportError):
# scipy needed for rolling_window
pytest.skip("scipy not available")
示例11: test_rolling_skew_edge_cases
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_series_equal [as 別名]
def test_rolling_skew_edge_cases(self):
all_nan = Series([np.NaN] * 5)
# yields all NaN (0 variance)
d = Series([1] * 5)
x = d.rolling(window=5).skew()
tm.assert_series_equal(all_nan, x)
# yields all NaN (window too small)
d = Series(np.random.randn(5))
x = d.rolling(window=2).skew()
tm.assert_series_equal(all_nan, x)
# yields [NaN, NaN, NaN, 0.177994, 1.548824]
d = Series([-1.50837035, -0.1297039, 0.19501095, 1.73508164, 0.41941401
])
expected = Series([np.NaN, np.NaN, np.NaN, 0.177994, 1.548824])
x = d.rolling(window=4).skew()
tm.assert_series_equal(expected, x)
示例12: test_rolling_kurt_edge_cases
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_series_equal [as 別名]
def test_rolling_kurt_edge_cases(self):
all_nan = Series([np.NaN] * 5)
# yields all NaN (0 variance)
d = Series([1] * 5)
x = d.rolling(window=5).kurt()
tm.assert_series_equal(all_nan, x)
# yields all NaN (window too small)
d = Series(np.random.randn(5))
x = d.rolling(window=3).kurt()
tm.assert_series_equal(all_nan, x)
# yields [NaN, NaN, NaN, 1.224307, 2.671499]
d = Series([-1.50837035, -0.1297039, 0.19501095, 1.73508164, 0.41941401
])
expected = Series([np.NaN, np.NaN, np.NaN, 1.224307, 2.671499])
x = d.rolling(window=4).kurt()
tm.assert_series_equal(expected, x)
示例13: test_rolling_max_gh6297
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_series_equal [as 別名]
def test_rolling_max_gh6297(self):
"""Replicate result expected in GH #6297"""
indices = [datetime(1975, 1, i) for i in range(1, 6)]
# So that we can have 2 datapoints on one of the days
indices.append(datetime(1975, 1, 3, 6, 0))
series = Series(range(1, 7), index=indices)
# Use floats instead of ints as values
series = series.map(lambda x: float(x))
# Sort chronologically
series = series.sort_index()
expected = Series([1.0, 2.0, 6.0, 4.0, 5.0],
index=[datetime(1975, 1, i, 0) for i in range(1, 6)])
x = series.resample('D').max().rolling(window=1).max()
tm.assert_series_equal(expected, x)
示例14: test_rolling_min_resample
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_series_equal [as 別名]
def test_rolling_min_resample(self):
indices = [datetime(1975, 1, i) for i in range(1, 6)]
# So that we can have 3 datapoints on last day (4, 10, and 20)
indices.append(datetime(1975, 1, 5, 1))
indices.append(datetime(1975, 1, 5, 2))
series = Series(list(range(0, 5)) + [10, 20], index=indices)
# Use floats instead of ints as values
series = series.map(lambda x: float(x))
# Sort chronologically
series = series.sort_index()
# Default how should be min
expected = Series([0.0, 1.0, 2.0, 3.0, 4.0],
index=[datetime(1975, 1, i, 0) for i in range(1, 6)])
r = series.resample('D').min().rolling(window=1)
tm.assert_series_equal(expected, r.min())
示例15: test_rolling_median_resample
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_series_equal [as 別名]
def test_rolling_median_resample(self):
indices = [datetime(1975, 1, i) for i in range(1, 6)]
# So that we can have 3 datapoints on last day (4, 10, and 20)
indices.append(datetime(1975, 1, 5, 1))
indices.append(datetime(1975, 1, 5, 2))
series = Series(list(range(0, 5)) + [10, 20], index=indices)
# Use floats instead of ints as values
series = series.map(lambda x: float(x))
# Sort chronologically
series = series.sort_index()
# Default how should be median
expected = Series([0.0, 1.0, 2.0, 3.0, 10],
index=[datetime(1975, 1, i, 0) for i in range(1, 6)])
x = series.resample('D').median().rolling(window=1).median()
tm.assert_series_equal(expected, x)