本文整理匯總了Python中pandas.util.testing.assert_produces_warning方法的典型用法代碼示例。如果您正苦於以下問題:Python testing.assert_produces_warning方法的具體用法?Python testing.assert_produces_warning怎麽用?Python testing.assert_produces_warning使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.util.testing
的用法示例。
在下文中一共展示了testing.assert_produces_warning方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_set_value
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_produces_warning [as 別名]
def test_set_value(self):
for item in self.panel.items:
for mjr in self.panel.major_axis[::2]:
for mnr in self.panel.minor_axis:
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
self.panel.set_value(item, mjr, mnr, 1.)
tm.assert_almost_equal(self.panel[item][mnr][mjr], 1.)
# resize
with catch_warnings():
simplefilter("ignore", FutureWarning)
res = self.panel.set_value('ItemE', 'foo', 'bar', 1.5)
assert isinstance(res, Panel)
assert res is not self.panel
assert res.get_value('ItemE', 'foo', 'bar') == 1.5
res3 = self.panel.set_value('ItemE', 'foobar', 'baz', 5)
assert is_float_dtype(res3['ItemE'].values)
msg = ("There must be an argument for each "
"axis plus the value provided")
with pytest.raises(TypeError, match=msg):
self.panel.set_value('a')
示例2: test_concat_different_kind
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_produces_warning [as 別名]
def test_concat_different_kind(self):
val1 = np.array([1, 2, np.nan, np.nan, 0, np.nan])
val2 = np.array([3, np.nan, 4, 0, 0])
sparse1 = pd.SparseSeries(val1, name='x', kind='integer')
sparse2 = pd.SparseSeries(val2, name='y', kind='block', fill_value=0)
with tm.assert_produces_warning(PerformanceWarning):
res = pd.concat([sparse1, sparse2])
exp = pd.concat([pd.Series(val1), pd.Series(val2)])
exp = pd.SparseSeries(exp, kind='integer')
tm.assert_sp_series_equal(res, exp)
with tm.assert_produces_warning(PerformanceWarning):
res = pd.concat([sparse2, sparse1])
exp = pd.concat([pd.Series(val2), pd.Series(val1)])
exp = pd.SparseSeries(exp, kind='block', fill_value=0)
tm.assert_sp_series_equal(res, exp)
示例3: test_sparse_frame_pad_backfill_limit
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_produces_warning [as 別名]
def test_sparse_frame_pad_backfill_limit(self):
index = np.arange(10)
df = DataFrame(np.random.randn(10, 4), index=index)
sdf = df.to_sparse()
result = sdf[:2].reindex(index, method='pad', limit=5)
with tm.assert_produces_warning(PerformanceWarning):
expected = sdf[:2].reindex(index).fillna(method='pad')
expected = expected.to_dense()
expected.values[-3:] = np.nan
expected = expected.to_sparse()
tm.assert_frame_equal(result, expected)
result = sdf[-2:].reindex(index, method='backfill', limit=5)
with tm.assert_produces_warning(PerformanceWarning):
expected = sdf[-2:].reindex(index).fillna(method='backfill')
expected = expected.to_dense()
expected.values[:3] = np.nan
expected = expected.to_sparse()
tm.assert_frame_equal(result, expected)
示例4: test_apply
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_produces_warning [as 別名]
def test_apply(frame):
applied = frame.apply(np.sqrt)
assert isinstance(applied, SparseDataFrame)
tm.assert_almost_equal(applied.values, np.sqrt(frame.values))
# agg / broadcast
with tm.assert_produces_warning(FutureWarning):
broadcasted = frame.apply(np.sum, broadcast=True)
assert isinstance(broadcasted, SparseDataFrame)
with tm.assert_produces_warning(FutureWarning):
exp = frame.to_dense().apply(np.sum, broadcast=True)
tm.assert_frame_equal(broadcasted.to_dense(), exp)
applied = frame.apply(np.sum)
tm.assert_series_equal(applied,
frame.to_dense().apply(nanops.nansum).to_sparse())
示例5: test_from_codes_with_float
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_produces_warning [as 別名]
def test_from_codes_with_float(self):
# GH21767
codes = [1.0, 2.0, 0] # integer, but in float dtype
dtype = CategoricalDtype(categories=['a', 'b', 'c'])
with tm.assert_produces_warning(FutureWarning):
cat = Categorical.from_codes(codes, dtype.categories)
tm.assert_numpy_array_equal(cat.codes, np.array([1, 2, 0], dtype='i1'))
with tm.assert_produces_warning(FutureWarning):
cat = Categorical.from_codes(codes, dtype=dtype)
tm.assert_numpy_array_equal(cat.codes, np.array([1, 2, 0], dtype='i1'))
codes = [1.1, 2.0, 0] # non-integer
with pytest.raises(ValueError,
match="codes need to be array-like integers"):
Categorical.from_codes(codes, dtype.categories)
with pytest.raises(ValueError,
match="codes need to be array-like integers"):
Categorical.from_codes(codes, dtype=dtype)
示例6: test_union_sort_other_incomparable
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_produces_warning [as 別名]
def test_union_sort_other_incomparable(self):
# https://github.com/pandas-dev/pandas/issues/24959
idx = pd.Index([1, pd.Timestamp('2000')])
# default (sort=None)
with tm.assert_produces_warning(RuntimeWarning):
result = idx.union(idx[:1])
tm.assert_index_equal(result, idx)
# sort=None
with tm.assert_produces_warning(RuntimeWarning):
result = idx.union(idx[:1], sort=None)
tm.assert_index_equal(result, idx)
# sort=False
result = idx.union(idx[:1], sort=False)
tm.assert_index_equal(result, idx)
示例7: test_construction_with_alt_tz_localize
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_produces_warning [as 別名]
def test_construction_with_alt_tz_localize(self, kwargs, tz_aware_fixture):
tz = tz_aware_fixture
i = pd.date_range('20130101', periods=5, freq='H', tz=tz)
kwargs = {key: attrgetter(val)(i) for key, val in kwargs.items()}
if str(tz) in ('UTC', 'tzutc()'):
warn = None
else:
warn = FutureWarning
with tm.assert_produces_warning(warn, check_stacklevel=False):
result = DatetimeIndex(i.tz_localize(None).asi8, **kwargs)
expected = DatetimeIndex(i, **kwargs)
tm.assert_index_equal(result, expected)
# localize into the provided tz
i2 = DatetimeIndex(i.tz_localize(None).asi8, tz='UTC')
expected = i.tz_localize(None).tz_localize('UTC')
tm.assert_index_equal(i2, expected)
# incompat tz/dtype
pytest.raises(ValueError, lambda: DatetimeIndex(
i.tz_localize(None).asi8, dtype=i.dtype, tz='US/Pacific'))
示例8: test_dti_tz_localize_nonexistent_raise_coerce
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_produces_warning [as 別名]
def test_dti_tz_localize_nonexistent_raise_coerce(self):
# GH#13057
times = ['2015-03-08 01:00', '2015-03-08 02:00', '2015-03-08 03:00']
index = DatetimeIndex(times)
tz = 'US/Eastern'
with pytest.raises(pytz.NonExistentTimeError):
index.tz_localize(tz=tz)
with pytest.raises(pytz.NonExistentTimeError):
with tm.assert_produces_warning(FutureWarning):
index.tz_localize(tz=tz, errors='raise')
with tm.assert_produces_warning(FutureWarning,
clear=FutureWarning,
check_stacklevel=False):
result = index.tz_localize(tz=tz, errors='coerce')
test_times = ['2015-03-08 01:00-05:00', 'NaT',
'2015-03-08 03:00-04:00']
dti = to_datetime(test_times, utc=True)
expected = dti.tz_convert('US/Eastern')
tm.assert_index_equal(result, expected)
示例9: test_to_period_tz
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_produces_warning [as 別名]
def test_to_period_tz(self, tz):
ts = date_range('1/1/2000', '2/1/2000', tz=tz)
with tm.assert_produces_warning(UserWarning):
# GH#21333 warning that timezone info will be lost
result = ts.to_period()[0]
expected = ts[0].to_period()
assert result == expected
expected = date_range('1/1/2000', '2/1/2000').to_period()
with tm.assert_produces_warning(UserWarning):
# GH#21333 warning that timezone info will be lost
result = ts.to_period()
tm.assert_index_equal(result, expected)
示例10: test_asarray_tz_naive
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_produces_warning [as 別名]
def test_asarray_tz_naive(self):
# This shouldn't produce a warning.
idx = pd.date_range('2000', periods=2)
# M8[ns] by default
with tm.assert_produces_warning(None):
result = np.asarray(idx)
expected = np.array(['2000-01-01', '2000-01-02'], dtype='M8[ns]')
tm.assert_numpy_array_equal(result, expected)
# optionally, object
with tm.assert_produces_warning(None):
result = np.asarray(idx, dtype=object)
expected = np.array([pd.Timestamp('2000-01-01'),
pd.Timestamp('2000-01-02')])
tm.assert_numpy_array_equal(result, expected)
示例11: test_asarray_tz_aware
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_produces_warning [as 別名]
def test_asarray_tz_aware(self):
tz = 'US/Central'
idx = pd.date_range('2000', periods=2, tz=tz)
expected = np.array(['2000-01-01T06', '2000-01-02T06'], dtype='M8[ns]')
# We warn by default and return an ndarray[M8[ns]]
with tm.assert_produces_warning(FutureWarning):
result = np.asarray(idx)
tm.assert_numpy_array_equal(result, expected)
# Old behavior with no warning
with tm.assert_produces_warning(None):
result = np.asarray(idx, dtype="M8[ns]")
tm.assert_numpy_array_equal(result, expected)
# Future behavior with no warning
expected = np.array([pd.Timestamp("2000-01-01", tz=tz),
pd.Timestamp("2000-01-02", tz=tz)])
with tm.assert_produces_warning(None):
result = np.asarray(idx, dtype=object)
tm.assert_numpy_array_equal(result, expected)
示例12: test_dti_shift_int
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_produces_warning [as 別名]
def test_dti_shift_int(self):
rng = date_range('1/1/2000', periods=20)
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
# GH#22535
result = rng + 5
expected = rng.shift(5)
tm.assert_index_equal(result, expected)
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
# GH#22535
result = rng - 5
expected = rng.shift(-5)
tm.assert_index_equal(result, expected)
示例13: test_pindex_multiples
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_produces_warning [as 別名]
def test_pindex_multiples(self):
with tm.assert_produces_warning(FutureWarning):
pi = PeriodIndex(start='1/1/11', end='12/31/11', freq='2M')
expected = PeriodIndex(['2011-01', '2011-03', '2011-05', '2011-07',
'2011-09', '2011-11'], freq='2M')
tm.assert_index_equal(pi, expected)
assert pi.freq == offsets.MonthEnd(2)
assert pi.freqstr == '2M'
pi = period_range(start='1/1/11', end='12/31/11', freq='2M')
tm.assert_index_equal(pi, expected)
assert pi.freq == offsets.MonthEnd(2)
assert pi.freqstr == '2M'
pi = period_range(start='1/1/11', periods=6, freq='2M')
tm.assert_index_equal(pi, expected)
assert pi.freq == offsets.MonthEnd(2)
assert pi.freqstr == '2M'
示例14: test_fillna_limit_pad
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_produces_warning [as 別名]
def test_fillna_limit_pad(self, data_missing):
with tm.assert_produces_warning(PerformanceWarning):
super(TestMissing, self).test_fillna_limit_pad(data_missing)
示例15: test_fillna_limit_backfill
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_produces_warning [as 別名]
def test_fillna_limit_backfill(self, data_missing):
with tm.assert_produces_warning(PerformanceWarning):
super(TestMissing, self).test_fillna_limit_backfill(data_missing)