當前位置: 首頁>>代碼示例>>Python>>正文


Python testing.assert_numpy_array_equal方法代碼示例

本文整理匯總了Python中pandas.util.testing.assert_numpy_array_equal方法的典型用法代碼示例。如果您正苦於以下問題:Python testing.assert_numpy_array_equal方法的具體用法?Python testing.assert_numpy_array_equal怎麽用?Python testing.assert_numpy_array_equal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pandas.util.testing的用法示例。


在下文中一共展示了testing.assert_numpy_array_equal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_searchsorted

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_numpy_array_equal [as 別名]
def test_searchsorted(self, data_for_sorting, as_series):
        b, c, a = data_for_sorting
        arr = type(data_for_sorting)._from_sequence([a, b, c])

        if as_series:
            arr = pd.Series(arr)
        assert arr.searchsorted(a) == 0
        assert arr.searchsorted(a, side="right") == 1

        assert arr.searchsorted(b) == 1
        assert arr.searchsorted(b, side="right") == 2

        assert arr.searchsorted(c) == 2
        assert arr.searchsorted(c, side="right") == 3

        result = arr.searchsorted(arr.take([0, 2]))
        expected = np.array([0, 2], dtype=np.intp)

        tm.assert_numpy_array_equal(result, expected)

        # sorter
        sorter = np.array([1, 2, 0])
        assert data_for_sorting.searchsorted(a, sorter=sorter) == 0 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:25,代碼來源:methods.py

示例2: test_pairwise_with_self

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_numpy_array_equal [as 別名]
def test_pairwise_with_self(self, f):

        # DataFrame with itself, pairwise=True
        # note that we may construct the 1st level of the MI
        # in a non-motononic way, so compare accordingly
        results = []
        for i, df in enumerate(self.df1s):
            result = f(df)
            tm.assert_index_equal(result.index.levels[0],
                                  df.index,
                                  check_names=False)
            tm.assert_numpy_array_equal(safe_sort(result.index.levels[1]),
                                        safe_sort(df.columns.unique()))
            tm.assert_index_equal(result.columns, df.columns)
            results.append(df)

        for i, result in enumerate(results):
            if i > 0:
                self.compare(result, results[0]) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:21,代碼來源:test_window.py

示例3: test_stack_sparse_frame

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_numpy_array_equal [as 別名]
def test_stack_sparse_frame(self, float_frame, float_frame_int_kind,
                                float_frame_fill0, float_frame_fill2):
        def _check(frame):
            dense_frame = frame.to_dense()  # noqa

            wp = Panel.from_dict({'foo': frame})
            from_dense_lp = wp.to_frame()

            from_sparse_lp = spf.stack_sparse_frame(frame)

            tm.assert_numpy_array_equal(from_dense_lp.values,
                                        from_sparse_lp.values)

        _check(float_frame)
        _check(float_frame_int_kind)

        # for now
        pytest.raises(Exception, _check, float_frame_fill0)
        pytest.raises(Exception, _check, float_frame_fill2) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:21,代碼來源:test_frame.py

示例4: test_delete

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_numpy_array_equal [as 別名]
def test_delete(self):
        newb = self.fblock.copy()
        newb.delete(0)
        assert isinstance(newb.mgr_locs, BlockPlacement)
        tm.assert_numpy_array_equal(newb.mgr_locs.as_array,
                                    np.array([2, 4], dtype=np.int64))
        assert (newb.values[0] == 1).all()

        newb = self.fblock.copy()
        newb.delete(1)
        assert isinstance(newb.mgr_locs, BlockPlacement)
        tm.assert_numpy_array_equal(newb.mgr_locs.as_array,
                                    np.array([0, 4], dtype=np.int64))
        assert (newb.values[1] == 2).all()

        newb = self.fblock.copy()
        newb.delete(2)
        tm.assert_numpy_array_equal(newb.mgr_locs.as_array,
                                    np.array([0, 2], dtype=np.int64))
        assert (newb.values[1] == 1).all()

        newb = self.fblock.copy()
        with pytest.raises(Exception):
            newb.delete(3) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:26,代碼來源:test_internals.py

示例5: test_take

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_numpy_array_equal [as 別名]
def test_take(self):
        def assert_take_ok(mgr, axis, indexer):
            mat = mgr.as_array()
            taken = mgr.take(indexer, axis)
            tm.assert_numpy_array_equal(np.take(mat, indexer, axis),
                                        taken.as_array(), check_dtype=False)
            tm.assert_index_equal(mgr.axes[axis].take(indexer),
                                  taken.axes[axis])

        for mgr in self.MANAGERS:
            for ax in range(mgr.ndim):
                # take/fancy indexer
                assert_take_ok(mgr, ax, [])
                assert_take_ok(mgr, ax, [0, 0, 0])
                assert_take_ok(mgr, ax, lrange(mgr.shape[ax]))

                if mgr.shape[ax] >= 3:
                    assert_take_ok(mgr, ax, [0, 1, 2])
                    assert_take_ok(mgr, ax, [-1, -2, -3]) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:21,代碼來源:test_internals.py

示例6: test_nonzero

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_numpy_array_equal [as 別名]
def test_nonzero(self):
        # Tests regression #21172.
        sa = pd.SparseArray([
            float('nan'),
            float('nan'),
            1, 0, 0,
            2, 0, 0, 0,
            3, 0, 0
        ])
        expected = np.array([2, 5, 9], dtype=np.int32)
        result, = sa.nonzero()
        tm.assert_numpy_array_equal(expected, result)

        sa = pd.SparseArray([0, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 0])
        result, = sa.nonzero()
        tm.assert_numpy_array_equal(expected, result) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_array.py

示例7: test_int_internal

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_numpy_array_equal [as 別名]
def test_int_internal(self):
        idx = _make_index(4, np.array([2, 3], dtype=np.int32), kind='integer')
        assert isinstance(idx, IntIndex)
        assert idx.npoints == 2
        tm.assert_numpy_array_equal(idx.indices,
                                    np.array([2, 3], dtype=np.int32))

        idx = _make_index(4, np.array([], dtype=np.int32), kind='integer')
        assert isinstance(idx, IntIndex)
        assert idx.npoints == 0
        tm.assert_numpy_array_equal(idx.indices,
                                    np.array([], dtype=np.int32))

        idx = _make_index(4, np.array([0, 1, 2, 3], dtype=np.int32),
                          kind='integer')
        assert isinstance(idx, IntIndex)
        assert idx.npoints == 4
        tm.assert_numpy_array_equal(idx.indices,
                                    np.array([0, 1, 2, 3], dtype=np.int32)) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:21,代碼來源:test_libsparse.py

示例8: test_conversions

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_numpy_array_equal [as 別名]
def test_conversions(data_missing):

    # astype to object series
    df = pd.DataFrame({'A': data_missing})
    result = df['A'].astype('object')
    expected = pd.Series(np.array([np.nan, 1], dtype=object), name='A')
    tm.assert_series_equal(result, expected)

    # convert to object ndarray
    # we assert that we are exactly equal
    # including type conversions of scalars
    result = df['A'].astype('object').values
    expected = np.array([np.nan, 1], dtype=object)
    tm.assert_numpy_array_equal(result, expected)

    for r, e in zip(result, expected):
        if pd.isnull(r):
            assert pd.isnull(e)
        elif is_integer(r):
            # PY2 can be int or long
            assert r == e
            assert is_integer(e)
        else:
            assert r == e
            assert type(r) == type(e) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:27,代碼來源:test_integer.py

示例9: test_array_interface_tz

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_numpy_array_equal [as 別名]
def test_array_interface_tz(self):
        tz = "US/Central"
        data = DatetimeArray(pd.date_range('2017', periods=2, tz=tz))
        result = np.asarray(data)

        expected = np.array([pd.Timestamp('2017-01-01T00:00:00', tz=tz),
                             pd.Timestamp('2017-01-02T00:00:00', tz=tz)],
                            dtype=object)
        tm.assert_numpy_array_equal(result, expected)

        result = np.asarray(data, dtype=object)
        tm.assert_numpy_array_equal(result, expected)

        result = np.asarray(data, dtype='M8[ns]')

        expected = np.array(['2017-01-01T06:00:00',
                             '2017-01-02T06:00:00'], dtype="M8[ns]")
        tm.assert_numpy_array_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:20,代碼來源:test_datetimes.py

示例10: test_searchsorted

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_numpy_array_equal [as 別名]
def test_searchsorted(self):
        data = np.arange(10, dtype='i8') * 24 * 3600 * 10**9
        arr = self.array_cls(data, freq='D')

        # scalar
        result = arr.searchsorted(arr[1])
        assert result == 1

        result = arr.searchsorted(arr[2], side="right")
        assert result == 3

        # own-type
        result = arr.searchsorted(arr[1:3])
        expected = np.array([1, 2], dtype=np.intp)
        tm.assert_numpy_array_equal(result, expected)

        result = arr.searchsorted(arr[1:3], side="right")
        expected = np.array([2, 3], dtype=np.intp)
        tm.assert_numpy_array_equal(result, expected)

        # Following numpy convention, NaT goes at the beginning
        #  (unlike NaN which goes at the end)
        result = arr.searchsorted(pd.NaT)
        assert result == 0 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:26,代碼來源:test_datetimelike.py

示例11: test_array_tz

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_numpy_array_equal [as 別名]
def test_array_tz(self, tz_naive_fixture):
        # GH#23524
        tz = tz_naive_fixture
        dti = pd.date_range('2016-01-01', periods=3, tz=tz)
        arr = DatetimeArray(dti)

        expected = dti.asi8.view('M8[ns]')
        result = np.array(arr, dtype='M8[ns]')
        tm.assert_numpy_array_equal(result, expected)

        result = np.array(arr, dtype='datetime64[ns]')
        tm.assert_numpy_array_equal(result, expected)

        # check that we are not making copies when setting copy=False
        result = np.array(arr, dtype='M8[ns]', copy=False)
        assert result.base is expected.base
        assert result.base is not None
        result = np.array(arr, dtype='datetime64[ns]', copy=False)
        assert result.base is expected.base
        assert result.base is not None 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:22,代碼來源:test_datetimelike.py

示例12: test_array_i8_dtype

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_numpy_array_equal [as 別名]
def test_array_i8_dtype(self, tz_naive_fixture):
        tz = tz_naive_fixture
        dti = pd.date_range('2016-01-01', periods=3, tz=tz)
        arr = DatetimeArray(dti)

        expected = dti.asi8
        result = np.array(arr, dtype='i8')
        tm.assert_numpy_array_equal(result, expected)

        result = np.array(arr, dtype=np.int64)
        tm.assert_numpy_array_equal(result, expected)

        # check that we are still making copies when setting copy=False
        result = np.array(arr, dtype='i8', copy=False)
        assert result.base is not expected.base
        assert result.base is None 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_datetimelike.py

示例13: test_array_interface

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_numpy_array_equal [as 別名]
def test_array_interface(self, period_index):
        arr = PeriodArray(period_index)

        # default asarray gives objects
        result = np.asarray(arr)
        expected = np.array(list(arr), dtype=object)
        tm.assert_numpy_array_equal(result, expected)

        # to object dtype (same as default)
        result = np.asarray(arr, dtype=object)
        tm.assert_numpy_array_equal(result, expected)

        # to other dtypes
        with pytest.raises(TypeError):
            np.asarray(arr, dtype='int64')

        with pytest.raises(TypeError):
            np.asarray(arr, dtype='float64')

        result = np.asarray(arr, dtype='S20')
        expected = np.asarray(arr).astype('S20')
        tm.assert_numpy_array_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:24,代碼來源:test_datetimelike.py

示例14: test_nan_handling

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_numpy_array_equal [as 別名]
def test_nan_handling(self):

        # Nans are represented as -1 in codes
        c = Categorical(["a", "b", np.nan, "a"])
        tm.assert_index_equal(c.categories, Index(["a", "b"]))
        tm.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0],
                                                       dtype=np.int8))
        c[1] = np.nan
        tm.assert_index_equal(c.categories, Index(["a", "b"]))
        tm.assert_numpy_array_equal(c._codes, np.array([0, -1, -1, 0],
                                                       dtype=np.int8))

        # Adding nan to categories should make assigned nan point to the
        # category!
        c = Categorical(["a", "b", np.nan, "a"])
        tm.assert_index_equal(c.categories, Index(["a", "b"]))
        tm.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0],
                                                       dtype=np.int8)) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:20,代碼來源:test_missing.py

示例15: test_categories_assigments

# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_numpy_array_equal [as 別名]
def test_categories_assigments(self):
        s = Categorical(["a", "b", "c", "a"])
        exp = np.array([1, 2, 3, 1], dtype=np.int64)
        s.categories = [1, 2, 3]
        tm.assert_numpy_array_equal(s.__array__(), exp)
        tm.assert_index_equal(s.categories, Index([1, 2, 3]))

        # lengthen
        with pytest.raises(ValueError):
            s.categories = [1, 2, 3, 4]

        # shorten
        with pytest.raises(ValueError):
            s.categories = [1, 2]

    # Combinations of sorted/unique: 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_indexing.py


注:本文中的pandas.util.testing.assert_numpy_array_equal方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。