本文整理匯總了Python中pandas.util.testing.assert_extension_array_equal方法的典型用法代碼示例。如果您正苦於以下問題:Python testing.assert_extension_array_equal方法的具體用法?Python testing.assert_extension_array_equal怎麽用?Python testing.assert_extension_array_equal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.util.testing
的用法示例。
在下文中一共展示了testing.assert_extension_array_equal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_integer_array_constructor
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_extension_array_equal [as 別名]
def test_integer_array_constructor():
values = np.array([1, 2, 3, 4], dtype='int64')
mask = np.array([False, False, False, True], dtype='bool')
result = IntegerArray(values, mask)
expected = integer_array([1, 2, 3, np.nan], dtype='int64')
tm.assert_extension_array_equal(result, expected)
with pytest.raises(TypeError):
IntegerArray(values.tolist(), mask)
with pytest.raises(TypeError):
IntegerArray(values, mask.tolist())
with pytest.raises(TypeError):
IntegerArray(values.astype(float), mask)
with pytest.raises(TypeError):
IntegerArray(values)
示例2: test_fillna_preserves_tz
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_extension_array_equal [as 別名]
def test_fillna_preserves_tz(self, method):
dti = pd.date_range('2000-01-01', periods=5, freq='D', tz='US/Central')
arr = DatetimeArray(dti, copy=True)
arr[2] = pd.NaT
fill_val = dti[1] if method == 'pad' else dti[3]
expected = DatetimeArray._from_sequence(
[dti[0], dti[1], fill_val, dti[3], dti[4]],
freq=None, tz='US/Central'
)
result = arr.fillna(method=method)
tm.assert_extension_array_equal(result, expected)
# assert that arr and dti were not modified in-place
assert arr[2] is pd.NaT
assert dti[2] == pd.Timestamp('2000-01-03', tz='US/Central')
示例3: test_grouping_grouper
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_extension_array_equal [as 別名]
def test_grouping_grouper(self, data_for_grouping):
df = pd.DataFrame({
"A": ["B", "B", None, None, "A", "A", "B", "C"],
"B": data_for_grouping
})
gr1 = df.groupby("A").grouper.groupings[0]
gr2 = df.groupby("B").grouper.groupings[0]
tm.assert_numpy_array_equal(gr1.grouper, df.A.values)
tm.assert_extension_array_equal(gr2.grouper, data_for_grouping)
示例4: test_take_na_value_other_decimal
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_extension_array_equal [as 別名]
def test_take_na_value_other_decimal(self):
arr = DecimalArray([decimal.Decimal('1.0'),
decimal.Decimal('2.0')])
result = arr.take([0, -1], allow_fill=True,
fill_value=decimal.Decimal('-1.0'))
expected = DecimalArray([decimal.Decimal('1.0'),
decimal.Decimal('-1.0')])
self.assert_extension_array_equal(result, expected)
示例5: test_divmod_array
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_extension_array_equal [as 別名]
def test_divmod_array(reverse, expected_div, expected_mod):
# https://github.com/pandas-dev/pandas/issues/22930
arr = to_decimal([1, 2, 3, 4])
if reverse:
div, mod = divmod(2, arr)
else:
div, mod = divmod(arr, 2)
expected_div = to_decimal(expected_div)
expected_mod = to_decimal(expected_mod)
tm.assert_extension_array_equal(div, expected_div)
tm.assert_extension_array_equal(mod, expected_mod)
示例6: test_pow
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_extension_array_equal [as 別名]
def test_pow(self):
# https://github.com/pandas-dev/pandas/issues/22022
a = integer_array([1, np.nan, np.nan, 1])
b = integer_array([1, np.nan, 1, np.nan])
result = a ** b
expected = pd.core.arrays.integer_array([1, np.nan, np.nan, 1])
tm.assert_extension_array_equal(result, expected)
示例7: test_to_integer_array_float
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_extension_array_equal [as 別名]
def test_to_integer_array_float():
result = integer_array([1., 2.])
expected = integer_array([1, 2])
tm.assert_extension_array_equal(result, expected)
with pytest.raises(TypeError, match="cannot safely cast non-equivalent"):
integer_array([1.5, 2.])
# for float dtypes, the itemsize is not preserved
result = integer_array(np.array([1., 2.], dtype='float32'))
assert result.dtype == Int64Dtype()
示例8: test_to_integer_array
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_extension_array_equal [as 別名]
def test_to_integer_array(values, to_dtype, result_dtype):
# convert existing arrays to IntegerArrays
result = integer_array(values, dtype=to_dtype)
assert result.dtype == result_dtype()
expected = integer_array(values, dtype=result_dtype())
tm.assert_extension_array_equal(result, expected)
示例9: test_array_inference_fails
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_extension_array_equal [as 別名]
def test_array_inference_fails(data):
result = pd.array(data)
expected = PandasArray(np.array(data, dtype=object))
tm.assert_extension_array_equal(result, expected)
示例10: test_from_sequence_dtype
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_extension_array_equal [as 別名]
def test_from_sequence_dtype():
arr = np.array([1, 2, 3], dtype='int64')
result = PandasArray._from_sequence(arr, dtype='uint64')
expected = PandasArray(np.array([1, 2, 3], dtype='uint64'))
tm.assert_extension_array_equal(result, expected)
示例11: test_ufunc
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_extension_array_equal [as 別名]
def test_ufunc():
arr = PandasArray(np.array([-1.0, 0.0, 1.0]))
result = np.abs(arr)
expected = PandasArray(np.abs(arr._ndarray))
tm.assert_extension_array_equal(result, expected)
r1, r2 = np.divmod(arr, np.add(arr, 2))
e1, e2 = np.divmod(arr._ndarray, np.add(arr._ndarray, 2))
e1 = PandasArray(e1)
e2 = PandasArray(e2)
tm.assert_extension_array_equal(r1, e1)
tm.assert_extension_array_equal(r2, e2)
示例12: test_set_closed
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_extension_array_equal [as 別名]
def test_set_closed(self, closed, new_closed):
# GH 21670
array = IntervalArray.from_breaks(range(10), closed=closed)
result = array.set_closed(new_closed)
expected = IntervalArray.from_breaks(range(10), closed=new_closed)
tm.assert_extension_array_equal(result, expected)
示例13: test_set_na
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_extension_array_equal [as 別名]
def test_set_na(self, left_right_dtypes):
left, right = left_right_dtypes
result = IntervalArray.from_arrays(left, right)
result[0] = np.nan
expected_left = Index([left._na_value] + list(left[1:]))
expected_right = Index([right._na_value] + list(right[1:]))
expected = IntervalArray.from_arrays(expected_left, expected_right)
tm.assert_extension_array_equal(result, expected)
示例14: test_numpy_array
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_extension_array_equal [as 別名]
def test_numpy_array(arr):
ser = pd.Series(arr)
result = ser.array
expected = PandasArray(arr)
tm.assert_extension_array_equal(result, expected)
示例15: test_datetime64tz_aware
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_extension_array_equal [as 別名]
def test_datetime64tz_aware(self):
# GH 15939
result = Series(
Index([Timestamp('20160101', tz='US/Eastern'),
Timestamp('20160101', tz='US/Eastern')])).unique()
expected = DatetimeArray._from_sequence(np.array([
Timestamp('2016-01-01 00:00:00-0500', tz="US/Eastern")
]))
tm.assert_extension_array_equal(result, expected)
result = Index([Timestamp('20160101', tz='US/Eastern'),
Timestamp('20160101', tz='US/Eastern')]).unique()
expected = DatetimeIndex(['2016-01-01 00:00:00'],
dtype='datetime64[ns, US/Eastern]', freq=None)
tm.assert_index_equal(result, expected)
result = pd.unique(
Series(Index([Timestamp('20160101', tz='US/Eastern'),
Timestamp('20160101', tz='US/Eastern')])))
expected = DatetimeArray._from_sequence(np.array([
Timestamp('2016-01-01', tz="US/Eastern"),
]))
tm.assert_extension_array_equal(result, expected)
result = pd.unique(Index([Timestamp('20160101', tz='US/Eastern'),
Timestamp('20160101', tz='US/Eastern')]))
expected = DatetimeIndex(['2016-01-01 00:00:00'],
dtype='datetime64[ns, US/Eastern]', freq=None)
tm.assert_index_equal(result, expected)