本文整理匯總了Python中pandas.util.testing.assert_contains_all方法的典型用法代碼示例。如果您正苦於以下問題:Python testing.assert_contains_all方法的具體用法?Python testing.assert_contains_all怎麽用?Python testing.assert_contains_all使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.util.testing
的用法示例。
在下文中一共展示了testing.assert_contains_all方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_union_dt_as_obj
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_contains_all [as 別名]
def test_union_dt_as_obj(self):
# TODO: Replace with fixturesult
with tm.assert_produces_warning(RuntimeWarning):
firstCat = self.strIndex.union(self.dateIndex)
secondCat = self.strIndex.union(self.strIndex)
if self.dateIndex.dtype == np.object_:
appended = np.append(self.strIndex, self.dateIndex)
else:
appended = np.append(self.strIndex, self.dateIndex.astype('O'))
assert tm.equalContents(firstCat, appended)
assert tm.equalContents(secondCat, self.strIndex)
tm.assert_contains_all(self.strIndex, firstCat)
tm.assert_contains_all(self.strIndex, secondCat)
tm.assert_contains_all(self.dateIndex, firstCat)
示例2: test_constructor
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_contains_all [as 別名]
def test_constructor(self):
# regular instance creation
tm.assert_contains_all(self.strIndex, self.strIndex)
tm.assert_contains_all(self.dateIndex, self.dateIndex)
# casting
arr = np.array(self.strIndex)
index = Index(arr)
tm.assert_contains_all(arr, index)
tm.assert_index_equal(self.strIndex, index)
# copy
arr = np.array(self.strIndex)
index = Index(arr, copy=True, name='name')
assert isinstance(index, Index)
assert index.name == 'name'
tm.assert_numpy_array_equal(arr, index.values)
arr[0] = "SOMEBIGLONGSTRING"
assert index[0] != "SOMEBIGLONGSTRING"
# what to do here?
# arr = np.array(5.)
# pytest.raises(Exception, arr.view, Index)
示例3: test_constructor_regular
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_contains_all [as 別名]
def test_constructor_regular(self, attr):
# regular instance creation
index = getattr(self, attr)
tm.assert_contains_all(index, index)
示例4: test_constructor_casting
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_contains_all [as 別名]
def test_constructor_casting(self):
# casting
arr = np.array(self.strIndex)
index = Index(arr)
tm.assert_contains_all(arr, index)
tm.assert_index_equal(self.strIndex, index)
示例5: test_union_dt_as_obj
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_contains_all [as 別名]
def test_union_dt_as_obj(self, sort):
# TODO: Replace with fixturesult
firstCat = self.strIndex.union(self.dateIndex)
secondCat = self.strIndex.union(self.strIndex)
if self.dateIndex.dtype == np.object_:
appended = np.append(self.strIndex, self.dateIndex)
else:
appended = np.append(self.strIndex, self.dateIndex.astype('O'))
assert tm.equalContents(firstCat, appended)
assert tm.equalContents(secondCat, self.strIndex)
tm.assert_contains_all(self.strIndex, firstCat)
tm.assert_contains_all(self.strIndex, secondCat)
tm.assert_contains_all(self.dateIndex, firstCat)
示例6: test_reading_all_sheets
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_contains_all [as 別名]
def test_reading_all_sheets(self, ext):
# Test reading all sheetnames by setting sheetname to None,
# Ensure a dict is returned.
# See PR #9450
basename = 'test_multisheet'
dfs = self.get_exceldf(basename, ext, sheet_name=None)
# ensure this is not alphabetical to test order preservation
expected_keys = ['Charlie', 'Alpha', 'Beta']
tm.assert_contains_all(expected_keys, dfs.keys())
# Issue 9930
# Ensure sheet order is preserved
assert expected_keys == list(dfs.keys())
示例7: test_reading_multiple_specific_sheets
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_contains_all [as 別名]
def test_reading_multiple_specific_sheets(self, ext):
# Test reading specific sheetnames by specifying a mixed list
# of integers and strings, and confirm that duplicated sheet
# references (positions/names) are removed properly.
# Ensure a dict is returned
# See PR #9450
basename = 'test_multisheet'
# Explicitly request duplicates. Only the set should be returned.
expected_keys = [2, 'Charlie', 'Charlie']
dfs = self.get_exceldf(basename, ext, sheet_name=expected_keys)
expected_keys = list(set(expected_keys))
tm.assert_contains_all(expected_keys, dfs.keys())
assert len(expected_keys) == len(dfs.keys())
示例8: test_reading_all_sheets_with_blank
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_contains_all [as 別名]
def test_reading_all_sheets_with_blank(self, ext):
# Test reading all sheetnames by setting sheetname to None,
# In the case where some sheets are blank.
# Issue #11711
basename = 'blank_with_header'
dfs = self.get_exceldf(basename, ext, sheet_name=None)
expected_keys = ['Sheet1', 'Sheet2', 'Sheet3']
tm.assert_contains_all(expected_keys, dfs.keys())
# GH6403
示例9: test_contains
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_contains_all [as 別名]
def test_contains(self):
tm.assert_contains_all(self.ts.index, self.ts)
示例10: test_reading_all_sheets
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_contains_all [as 別名]
def test_reading_all_sheets(self):
# Test reading all sheetnames by setting sheetname to None,
# Ensure a dict is returned.
# See PR #9450
basename = 'test_multisheet'
dfs = self.get_exceldf(basename, sheet_name=None)
# ensure this is not alphabetical to test order preservation
expected_keys = ['Charlie', 'Alpha', 'Beta']
tm.assert_contains_all(expected_keys, dfs.keys())
# Issue 9930
# Ensure sheet order is preserved
assert expected_keys == list(dfs.keys())
示例11: test_reading_all_sheets_with_blank
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_contains_all [as 別名]
def test_reading_all_sheets_with_blank(self):
# Test reading all sheetnames by setting sheetname to None,
# In the case where some sheets are blank.
# Issue #11711
basename = 'blank_with_header'
dfs = self.get_exceldf(basename, sheet_name=None)
expected_keys = ['Sheet1', 'Sheet2', 'Sheet3']
tm.assert_contains_all(expected_keys, dfs.keys())
# GH6403
示例12: test_from_to_scipy
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_contains_all [as 別名]
def test_from_to_scipy(spmatrix, index, columns, fill_value, dtype):
# GH 4343
# Make one ndarray and from it one sparse matrix, both to be used for
# constructing frames and comparing results
arr = np.eye(3, dtype=dtype)
# GH 16179
arr[0, 1] = dtype(2)
try:
spm = spmatrix(arr)
assert spm.dtype == arr.dtype
except (TypeError, AssertionError):
# If conversion to sparse fails for this spmatrix type and arr.dtype,
# then the combination is not currently supported in NumPy, so we
# can just skip testing it thoroughly
return
sdf = SparseDataFrame(spm, index=index, columns=columns,
default_fill_value=fill_value)
# Expected result construction is kind of tricky for all
# dtype-fill_value combinations; easiest to cast to something generic
# and except later on
rarr = arr.astype(object)
rarr[arr == 0] = np.nan
expected = SparseDataFrame(rarr, index=index, columns=columns).fillna(
fill_value if fill_value is not None else np.nan)
# Assert frame is as expected
sdf_obj = sdf.astype(object)
tm.assert_sp_frame_equal(sdf_obj, expected)
tm.assert_frame_equal(sdf_obj.to_dense(), expected.to_dense())
# Assert spmatrices equal
assert dict(sdf.to_coo().todok()) == dict(spm.todok())
# Ensure dtype is preserved if possible
# XXX: verify this
res_dtype = bool if is_bool_dtype(dtype) else dtype
tm.assert_contains_all(sdf.dtypes.apply(lambda dtype: dtype.subtype),
{np.dtype(res_dtype)})
assert sdf.to_coo().dtype == res_dtype
# However, adding a str column results in an upcast to object
sdf['strings'] = np.arange(len(sdf)).astype(str)
assert sdf.to_coo().dtype == np.object_
示例13: test_from_to_scipy_object
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import assert_contains_all [as 別名]
def test_from_to_scipy_object(spmatrix, fill_value):
# GH 4343
dtype = object
columns = list('cd')
index = list('ab')
if (spmatrix is scipy.sparse.dok_matrix and LooseVersion(
scipy.__version__) >= LooseVersion('0.19.0')):
pytest.skip("dok_matrix from object does not work in SciPy >= 0.19")
# Make one ndarray and from it one sparse matrix, both to be used for
# constructing frames and comparing results
arr = np.eye(2, dtype=dtype)
try:
spm = spmatrix(arr)
assert spm.dtype == arr.dtype
except (TypeError, AssertionError):
# If conversion to sparse fails for this spmatrix type and arr.dtype,
# then the combination is not currently supported in NumPy, so we
# can just skip testing it thoroughly
return
sdf = SparseDataFrame(spm, index=index, columns=columns,
default_fill_value=fill_value)
# Expected result construction is kind of tricky for all
# dtype-fill_value combinations; easiest to cast to something generic
# and except later on
rarr = arr.astype(object)
rarr[arr == 0] = np.nan
expected = SparseDataFrame(rarr, index=index, columns=columns).fillna(
fill_value if fill_value is not None else np.nan)
# Assert frame is as expected
sdf_obj = sdf.astype(SparseDtype(object, fill_value))
tm.assert_sp_frame_equal(sdf_obj, expected)
tm.assert_frame_equal(sdf_obj.to_dense(), expected.to_dense())
# Assert spmatrices equal
assert dict(sdf.to_coo().todok()) == dict(spm.todok())
# Ensure dtype is preserved if possible
res_dtype = object
tm.assert_contains_all(sdf.dtypes.apply(lambda dtype: dtype.subtype),
{np.dtype(res_dtype)})
assert sdf.to_coo().dtype == res_dtype