本文整理匯總了Python中pandas.util.testing.RNGContext方法的典型用法代碼示例。如果您正苦於以下問題:Python testing.RNGContext方法的具體用法?Python testing.RNGContext怎麽用?Python testing.RNGContext使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.util.testing
的用法示例。
在下文中一共展示了testing.RNGContext方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_partially_invalid_plot_data
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import RNGContext [as 別名]
def test_partially_invalid_plot_data(self):
with tm.RNGContext(42):
df = DataFrame(randn(10, 2), dtype=object)
df[np.random.rand(df.shape[0]) > 0.5] = 'a'
for kind in plotting._core._common_kinds:
if not _ok_for_gaussian_kde(kind):
continue
with pytest.raises(TypeError):
df.plot(kind=kind)
with tm.RNGContext(42):
# area plot doesn't support positive/negative mixed data
kinds = ['area']
df = DataFrame(rand(10, 2), dtype=object)
df[np.random.rand(df.shape[0]) > 0.5] = 'a'
for kind in kinds:
with pytest.raises(TypeError):
df.plot(kind=kind)
示例2: test_grouped_plot_fignums
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import RNGContext [as 別名]
def test_grouped_plot_fignums(self):
n = 10
weight = Series(np.random.normal(166, 20, size=n))
height = Series(np.random.normal(60, 10, size=n))
with tm.RNGContext(42):
gender = np.random.choice(['male', 'female'], size=n)
df = DataFrame({'height': height, 'weight': weight, 'gender': gender})
gb = df.groupby('gender')
res = gb.plot()
assert len(self.plt.get_fignums()) == 2
assert len(res) == 2
tm.close()
res = gb.boxplot(return_type='axes')
assert len(self.plt.get_fignums()) == 1
assert len(res) == 2
tm.close()
# now works with GH 5610 as gender is excluded
res = df.groupby('gender').hist()
tm.close()
示例3: test_scatter_matrix_axis
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import RNGContext [as 別名]
def test_scatter_matrix_axis(self):
scatter_matrix = plotting.scatter_matrix
with tm.RNGContext(42):
df = DataFrame(randn(100, 3))
# we are plotting multiples on a sub-plot
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(scatter_matrix, filterwarnings='always',
frame=df, range_padding=.1)
axes0_labels = axes[0][0].yaxis.get_majorticklabels()
# GH 5662
expected = ['-2', '0', '2']
self._check_text_labels(axes0_labels, expected)
self._check_ticks_props(
axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)
df[0] = ((df[0] - 2) / 3)
# we are plotting multiples on a sub-plot
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(scatter_matrix, filterwarnings='always',
frame=df, range_padding=.1)
axes0_labels = axes[0][0].yaxis.get_majorticklabels()
expected = ['-1.0', '-0.5', '0.0']
self._check_text_labels(axes0_labels, expected)
self._check_ticks_props(
axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)
示例4: test_grouped_hist_legacy2
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import RNGContext [as 別名]
def test_grouped_hist_legacy2(self):
n = 10
weight = Series(np.random.normal(166, 20, size=n))
height = Series(np.random.normal(60, 10, size=n))
with tm.RNGContext(42):
gender_int = np.random.choice([0, 1], size=n)
df_int = DataFrame({'height': height, 'weight': weight,
'gender': gender_int})
gb = df_int.groupby('gender')
axes = gb.hist()
assert len(axes) == 2
assert len(self.plt.get_fignums()) == 2
tm.close()
示例5: test_line_area_stacked
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import RNGContext [as 別名]
def test_line_area_stacked(self):
with tm.RNGContext(42):
df = DataFrame(rand(6, 4), columns=['w', 'x', 'y', 'z'])
neg_df = -df
# each column has either positive or negative value
sep_df = DataFrame({'w': rand(6),
'x': rand(6),
'y': -rand(6),
'z': -rand(6)})
# each column has positive-negative mixed value
mixed_df = DataFrame(randn(6, 4),
index=list(string.ascii_letters[:6]),
columns=['w', 'x', 'y', 'z'])
for kind in ['line', 'area']:
ax1 = _check_plot_works(df.plot, kind=kind, stacked=False)
ax2 = _check_plot_works(df.plot, kind=kind, stacked=True)
self._compare_stacked_y_cood(ax1.lines, ax2.lines)
ax1 = _check_plot_works(neg_df.plot, kind=kind, stacked=False)
ax2 = _check_plot_works(neg_df.plot, kind=kind, stacked=True)
self._compare_stacked_y_cood(ax1.lines, ax2.lines)
ax1 = _check_plot_works(sep_df.plot, kind=kind, stacked=False)
ax2 = _check_plot_works(sep_df.plot, kind=kind, stacked=True)
self._compare_stacked_y_cood(ax1.lines[:2], ax2.lines[:2])
self._compare_stacked_y_cood(ax1.lines[2:], ax2.lines[2:])
_check_plot_works(mixed_df.plot, stacked=False)
with pytest.raises(ValueError):
mixed_df.plot(stacked=True)
_check_plot_works(df.plot, kind=kind, logx=True, stacked=True)
示例6: setup_method
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import RNGContext [as 別名]
def setup_method(self, method):
import matplotlib as mpl
mpl.rcdefaults()
self.mpl_ge_2_0_1 = plotting._compat._mpl_ge_2_0_1()
self.mpl_ge_2_1_0 = plotting._compat._mpl_ge_2_1_0()
self.mpl_ge_2_2_0 = plotting._compat._mpl_ge_2_2_0()
self.mpl_ge_2_2_2 = plotting._compat._mpl_ge_2_2_2()
self.mpl_ge_3_0_0 = plotting._compat._mpl_ge_3_0_0()
self.bp_n_objects = 7
self.polycollection_factor = 2
self.default_figsize = (6.4, 4.8)
self.default_tick_position = 'left'
n = 100
with tm.RNGContext(42):
gender = np.random.choice(['Male', 'Female'], size=n)
classroom = np.random.choice(['A', 'B', 'C'], size=n)
self.hist_df = DataFrame({'gender': gender,
'classroom': classroom,
'height': random.normal(66, 4, size=n),
'weight': random.normal(161, 32, size=n),
'category': random.randint(4, size=n)})
self.tdf = tm.makeTimeDataFrame()
self.hexbin_df = DataFrame({"A": np.random.uniform(size=20),
"B": np.random.uniform(size=20),
"C": np.arange(20) + np.random.uniform(
size=20)})
示例7: test_series_groupby_plotting_nominally_works
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import RNGContext [as 別名]
def test_series_groupby_plotting_nominally_works(self):
n = 10
weight = Series(np.random.normal(166, 20, size=n))
height = Series(np.random.normal(60, 10, size=n))
with tm.RNGContext(42):
gender = np.random.choice(['male', 'female'], size=n)
weight.groupby(gender).plot()
tm.close()
height.groupby(gender).hist()
tm.close()
# Regression test for GH8733
height.groupby(gender).plot(alpha=0.5)
tm.close()
示例8: test_rng_context
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import RNGContext [as 別名]
def test_rng_context():
import numpy as np
expected0 = 1.764052345967664
expected1 = 1.6243453636632417
with tm.RNGContext(0):
with tm.RNGContext(1):
assert np.random.randn() == expected1
assert np.random.randn() == expected0
示例9: test_scatter_matrix_axis
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import RNGContext [as 別名]
def test_scatter_matrix_axis(self):
scatter_matrix = plotting.scatter_matrix
with tm.RNGContext(42):
df = DataFrame(randn(100, 3))
# we are plotting multiples on a sub-plot
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(scatter_matrix, filterwarnings='always',
frame=df, range_padding=.1)
axes0_labels = axes[0][0].yaxis.get_majorticklabels()
# GH 5662
if self.mpl_ge_2_0_0:
expected = ['-2', '0', '2']
else:
expected = ['-2', '-1', '0', '1', '2']
self._check_text_labels(axes0_labels, expected)
self._check_ticks_props(
axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)
df[0] = ((df[0] - 2) / 3)
# we are plotting multiples on a sub-plot
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(scatter_matrix, filterwarnings='always',
frame=df, range_padding=.1)
axes0_labels = axes[0][0].yaxis.get_majorticklabels()
if self.mpl_ge_2_0_0:
expected = ['-1.0', '-0.5', '0.0']
else:
expected = ['-1.2', '-1.0', '-0.8', '-0.6', '-0.4', '-0.2', '0.0']
self._check_text_labels(axes0_labels, expected)
self._check_ticks_props(
axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)
示例10: test_scatter_matrix_axis
# 需要導入模塊: from pandas.util import testing [as 別名]
# 或者: from pandas.util.testing import RNGContext [as 別名]
def test_scatter_matrix_axis(self):
tm._skip_if_no_scipy()
scatter_matrix = plotting.scatter_matrix
with tm.RNGContext(42):
df = DataFrame(randn(100, 3))
# we are plotting multiples on a sub-plot
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(scatter_matrix, filterwarnings='always',
frame=df, range_padding=.1)
axes0_labels = axes[0][0].yaxis.get_majorticklabels()
# GH 5662
if self.mpl_ge_2_0_0:
expected = ['-2', '0', '2']
else:
expected = ['-2', '-1', '0', '1', '2']
self._check_text_labels(axes0_labels, expected)
self._check_ticks_props(
axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)
df[0] = ((df[0] - 2) / 3)
# we are plotting multiples on a sub-plot
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(scatter_matrix, filterwarnings='always',
frame=df, range_padding=.1)
axes0_labels = axes[0][0].yaxis.get_majorticklabels()
if self.mpl_ge_2_0_0:
expected = ['-1.0', '-0.5', '0.0']
else:
expected = ['-1.2', '-1.0', '-0.8', '-0.6', '-0.4', '-0.2', '0.0']
self._check_text_labels(axes0_labels, expected)
self._check_ticks_props(
axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)