本文整理匯總了Python中pandas.tseries.offsets.DateOffset方法的典型用法代碼示例。如果您正苦於以下問題:Python offsets.DateOffset方法的具體用法?Python offsets.DateOffset怎麽用?Python offsets.DateOffset使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.tseries.offsets
的用法示例。
在下文中一共展示了offsets.DateOffset方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_daterange
# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def test_daterange(library, df, assert_equal):
df.index.name = 'idx'
df.name = 'FOO'
library.write('MYARR', df)
# whole array
saved_arr = library.read('MYARR').data
assert_equal(df, saved_arr)
assert_equal(df, library.read('MYARR', date_range=DateRange(df.index[0])).data)
assert_equal(df, library.read('MYARR', date_range=DateRange(df.index[0], df.index[-1])).data)
assert_equal(df, library.read('MYARR', date_range=DateRange()).data)
assert_equal(df[df.index[10]:], library.read('MYARR', date_range=DateRange(df.index[10])).data)
assert_equal(df[:df.index[10]], library.read('MYARR', date_range=DateRange(end=df.index[10])).data)
assert_equal(df[df.index[-1]:], library.read('MYARR', date_range=DateRange(df.index[-1])).data)
assert_equal(df[df.index[-1]:], library.read('MYARR', date_range=DateRange(df.index[-1], df.index[-1])).data)
assert_equal(df[df.index[0]:df.index[0]], library.read('MYARR', date_range=DateRange(df.index[0], df.index[0])).data)
assert_equal(df[:df.index[0]], library.read('MYARR', date_range=DateRange(end=df.index[0])).data)
assert_equal(df[df.index[0] - DateOffset(days=1):],
library.read('MYARR', date_range=DateRange(df.index[0] - DateOffset(days=1))).data)
assert_equal(df[df.index[-1] + DateOffset(days=1):],
library.read('MYARR', date_range=DateRange(df.index[-1] + DateOffset(days=1))).data)
assert len(library.read('MYARR', date_range=DateRange(dt(1950, 1, 1), dt(1951, 1, 1))).data) == 0
assert len(library.read('MYARR', date_range=DateRange(dt(2091, 1, 1), dt(2091, 1, 1))).data) == 0
示例2: _get_freq
# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def _get_freq(ax, series):
# get frequency from data
freq = getattr(series.index, 'freq', None)
if freq is None:
freq = getattr(series.index, 'inferred_freq', None)
ax_freq = _get_ax_freq(ax)
# use axes freq if no data freq
if freq is None:
freq = ax_freq
# get the period frequency
if isinstance(freq, DateOffset):
freq = freq.rule_code
else:
freq = get_base_alias(freq)
freq = frequencies.get_period_alias(freq)
return freq, ax_freq
示例3: maybe_infer_freq
# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def maybe_infer_freq(freq):
"""
Comparing a DateOffset to the string "infer" raises, so we need to
be careful about comparisons. Make a dummy variable `freq_infer` to
signify the case where the given freq is "infer" and set freq to None
to avoid comparison trouble later on.
Parameters
----------
freq : {DateOffset, None, str}
Returns
-------
freq : {DateOffset, None}
freq_infer : bool
"""
freq_infer = False
if not isinstance(freq, DateOffset):
# if a passed freq is None, don't infer automatically
if freq != 'infer':
freq = frequencies.to_offset(freq)
else:
freq_infer = True
freq = None
return freq, freq_infer
示例4: __new__
# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def __new__(cls, freq=None):
"""
Parameters
----------
freq : frequency
"""
if isinstance(freq, PeriodDtype):
return freq
elif freq is None:
# empty constructor for pickle compat
return object.__new__(cls)
from pandas.tseries.offsets import DateOffset
if not isinstance(freq, DateOffset):
freq = cls._parse_dtype_strict(freq)
try:
return cls._cache[freq.freqstr]
except KeyError:
u = object.__new__(cls)
u.freq = freq
cls._cache[freq.freqstr] = u
return u
示例5: _apply_loffset
# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def _apply_loffset(self, result):
"""
If loffset is set, offset the result index.
This is NOT an idempotent routine, it will be applied
exactly once to the result.
Parameters
----------
result : Series or DataFrame
the result of resample
"""
needs_offset = (
isinstance(self.loffset, (DateOffset, timedelta,
np.timedelta64)) and
isinstance(result.index, DatetimeIndex) and
len(result.index) > 0
)
if needs_offset:
result.index = result.index + self.loffset
self.loffset = None
return result
示例6: _get_freq
# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def _get_freq(ax, series):
# get frequency from data
freq = getattr(series.index, 'freq', None)
if freq is None:
freq = getattr(series.index, 'inferred_freq', None)
ax_freq = _get_ax_freq(ax)
# use axes freq if no data freq
if freq is None:
freq = ax_freq
# get the period frequency
if isinstance(freq, DateOffset):
freq = freq.rule_code
else:
freq = frequencies.get_base_alias(freq)
freq = frequencies.get_period_alias(freq)
return freq, ax_freq
示例7: _get_offset
# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def _get_offset(self, klass, value=1, normalize=False):
# create instance from offset class
if klass is FY5253:
klass = klass(n=value, startingMonth=1, weekday=1,
variation='last', normalize=normalize)
elif klass is FY5253Quarter:
klass = klass(n=value, startingMonth=1, weekday=1,
qtr_with_extra_week=1, variation='last',
normalize=normalize)
elif klass is LastWeekOfMonth:
klass = klass(n=value, weekday=5, normalize=normalize)
elif klass is WeekOfMonth:
klass = klass(n=value, week=1, weekday=5, normalize=normalize)
elif klass is Week:
klass = klass(n=value, weekday=5, normalize=normalize)
elif klass is DateOffset:
klass = klass(days=value, normalize=normalize)
else:
try:
klass = klass(value, normalize=normalize)
except Exception:
klass = klass(normalize=normalize)
return klass
示例8: _validate_frequency
# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def _validate_frequency(cls, index, freq, **kwargs):
"""
Validate that a frequency is compatible with the values of a given
DatetimeIndex or TimedeltaIndex
Parameters
----------
index : DatetimeIndex or TimedeltaIndex
The index on which to determine if the given frequency is valid
freq : DateOffset
The frequency to validate
"""
inferred = index.inferred_freq
if index.empty or inferred == freq.freqstr:
return None
on_freq = cls._generate(
index[0], None, len(index), None, freq, **kwargs)
if not np.array_equal(index.asi8, on_freq.asi8):
msg = ('Inferred frequency {infer} from passed values does not '
'conform to passed frequency {passed}')
raise ValueError(msg.format(infer=inferred, passed=freq.freqstr))
示例9: _apply_loffset
# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def _apply_loffset(self, result):
"""
if loffset is set, offset the result index
This is NOT an idempotent routine, it will be applied
exactly once to the result.
Parameters
----------
result : Series or DataFrame
the result of resample
"""
needs_offset = (
isinstance(self.loffset, (DateOffset, timedelta)) and
isinstance(result.index, DatetimeIndex) and
len(result.index) > 0
)
if needs_offset:
result.index = result.index + self.loffset
self.loffset = None
return result
示例10: _get_freq
# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def _get_freq(ax, series):
# get frequency from data
freq = getattr(series.index, 'freq', None)
if freq is None:
freq = getattr(series.index, 'inferred_freq', None)
ax_freq = getattr(ax, 'freq', None)
# use axes freq if no data freq
if freq is None:
freq = ax_freq
# get the period frequency
if isinstance(freq, DateOffset):
freq = freq.rule_code
else:
freq = frequencies.get_base_alias(freq)
freq = frequencies.get_period_alias(freq)
return freq
示例11: _use_dynamic_x
# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def _use_dynamic_x(ax, data):
freq = _get_index_freq(data)
ax_freq = _get_ax_freq(ax)
if freq is None: # convert irregular if axes has freq info
freq = ax_freq
else: # do not use tsplot if irregular was plotted first
if (ax_freq is None) and (len(ax.get_lines()) > 0):
return False
if freq is None:
return False
if isinstance(freq, DateOffset):
freq = freq.rule_code
else:
freq = get_base_alias(freq)
freq = frequencies.get_period_alias(freq)
if freq is None:
return False
# hack this for 0.10.1, creating more technical debt...sigh
if isinstance(data.index, ABCDatetimeIndex):
base = get_freq(freq)
x = data.index
if (base <= FreqGroup.FR_DAY):
return x[:1].is_normalized
return Period(x[0], freq).to_timestamp(tz=x.tz) == x[0]
return True
示例12: _maybe_convert_index
# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def _maybe_convert_index(ax, data):
# tsplot converts automatically, but don't want to convert index
# over and over for DataFrames
if isinstance(data.index, ABCDatetimeIndex):
freq = getattr(data.index, 'freq', None)
if freq is None:
freq = getattr(data.index, 'inferred_freq', None)
if isinstance(freq, DateOffset):
freq = freq.rule_code
if freq is None:
freq = _get_ax_freq(ax)
if freq is None:
raise ValueError('Could not get frequency alias for plotting')
freq = get_base_alias(freq)
freq = frequencies.get_period_alias(freq)
data = data.to_period(freq=freq)
return data
# Patch methods for subplot. Only format_dateaxis is currently used.
# Do we need the rest for convenience?
示例13: test_to_M8
# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def test_to_M8():
valb = datetime(2007, 10, 1)
valu = _to_M8(valb)
assert isinstance(valu, np.datetime64)
#####
# DateOffset Tests
#####
示例14: test_offset_freqstr
# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def test_offset_freqstr(self, offset_types):
offset = self._get_offset(offset_types)
freqstr = offset.freqstr
if freqstr not in ('<Easter>',
"<DateOffset: days=1>",
'LWOM-SAT', ):
code = get_offset(freqstr)
assert offset.rule_code == code
示例15: test_rollforward
# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def test_rollforward(self, offset_types):
expecteds = self.expecteds.copy()
# result will not be changed if the target is on the offset
no_changes = ['Day', 'MonthBegin', 'SemiMonthBegin', 'YearBegin',
'Week', 'Hour', 'Minute', 'Second', 'Milli', 'Micro',
'Nano', 'DateOffset']
for n in no_changes:
expecteds[n] = Timestamp('2011/01/01 09:00')
expecteds['BusinessHour'] = Timestamp('2011-01-03 09:00:00')
expecteds['CustomBusinessHour'] = Timestamp('2011-01-03 09:00:00')
# but be changed when normalize=True
norm_expected = expecteds.copy()
for k in norm_expected:
norm_expected[k] = Timestamp(norm_expected[k].date())
normalized = {'Day': Timestamp('2011-01-02 00:00:00'),
'DateOffset': Timestamp('2011-01-02 00:00:00'),
'MonthBegin': Timestamp('2011-02-01 00:00:00'),
'SemiMonthBegin': Timestamp('2011-01-15 00:00:00'),
'YearBegin': Timestamp('2012-01-01 00:00:00'),
'Week': Timestamp('2011-01-08 00:00:00'),
'Hour': Timestamp('2011-01-01 00:00:00'),
'Minute': Timestamp('2011-01-01 00:00:00'),
'Second': Timestamp('2011-01-01 00:00:00'),
'Milli': Timestamp('2011-01-01 00:00:00'),
'Micro': Timestamp('2011-01-01 00:00:00')}
norm_expected.update(normalized)
sdt = datetime(2011, 1, 1, 9, 0)
ndt = np_datetime64_compat('2011-01-01 09:00Z')
for dt in [sdt, ndt]:
expected = expecteds[offset_types.__name__]
self._check_offsetfunc_works(offset_types, 'rollforward', dt,
expected)
expected = norm_expected[offset_types.__name__]
self._check_offsetfunc_works(offset_types, 'rollforward', dt,
expected, normalize=True)