當前位置: 首頁>>代碼示例>>Python>>正文


Python offsets.DateOffset方法代碼示例

本文整理匯總了Python中pandas.tseries.offsets.DateOffset方法的典型用法代碼示例。如果您正苦於以下問題:Python offsets.DateOffset方法的具體用法?Python offsets.DateOffset怎麽用?Python offsets.DateOffset使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pandas.tseries.offsets的用法示例。


在下文中一共展示了offsets.DateOffset方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_daterange

# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def test_daterange(library, df, assert_equal):
    df.index.name = 'idx'
    df.name = 'FOO'
    library.write('MYARR', df)
    # whole array
    saved_arr = library.read('MYARR').data
    assert_equal(df, saved_arr)
    assert_equal(df, library.read('MYARR', date_range=DateRange(df.index[0])).data)
    assert_equal(df, library.read('MYARR', date_range=DateRange(df.index[0], df.index[-1])).data)
    assert_equal(df, library.read('MYARR', date_range=DateRange()).data)
    assert_equal(df[df.index[10]:], library.read('MYARR', date_range=DateRange(df.index[10])).data)
    assert_equal(df[:df.index[10]], library.read('MYARR', date_range=DateRange(end=df.index[10])).data)
    assert_equal(df[df.index[-1]:], library.read('MYARR', date_range=DateRange(df.index[-1])).data)
    assert_equal(df[df.index[-1]:], library.read('MYARR', date_range=DateRange(df.index[-1], df.index[-1])).data)
    assert_equal(df[df.index[0]:df.index[0]], library.read('MYARR', date_range=DateRange(df.index[0], df.index[0])).data)
    assert_equal(df[:df.index[0]], library.read('MYARR', date_range=DateRange(end=df.index[0])).data)
    assert_equal(df[df.index[0] - DateOffset(days=1):],
                 library.read('MYARR', date_range=DateRange(df.index[0] - DateOffset(days=1))).data)
    assert_equal(df[df.index[-1] + DateOffset(days=1):],
                 library.read('MYARR', date_range=DateRange(df.index[-1] + DateOffset(days=1))).data)
    assert len(library.read('MYARR', date_range=DateRange(dt(1950, 1, 1), dt(1951, 1, 1))).data) == 0
    assert len(library.read('MYARR', date_range=DateRange(dt(2091, 1, 1), dt(2091, 1, 1))).data) == 0 
開發者ID:man-group,項目名稱:arctic,代碼行數:24,代碼來源:test_pandas_store.py

示例2: _get_freq

# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def _get_freq(ax, series):
    # get frequency from data
    freq = getattr(series.index, 'freq', None)
    if freq is None:
        freq = getattr(series.index, 'inferred_freq', None)

    ax_freq = _get_ax_freq(ax)

    # use axes freq if no data freq
    if freq is None:
        freq = ax_freq

    # get the period frequency
    if isinstance(freq, DateOffset):
        freq = freq.rule_code
    else:
        freq = get_base_alias(freq)

    freq = frequencies.get_period_alias(freq)
    return freq, ax_freq 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:22,代碼來源:_timeseries.py

示例3: maybe_infer_freq

# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def maybe_infer_freq(freq):
    """
    Comparing a DateOffset to the string "infer" raises, so we need to
    be careful about comparisons.  Make a dummy variable `freq_infer` to
    signify the case where the given freq is "infer" and set freq to None
    to avoid comparison trouble later on.

    Parameters
    ----------
    freq : {DateOffset, None, str}

    Returns
    -------
    freq : {DateOffset, None}
    freq_infer : bool
    """
    freq_infer = False
    if not isinstance(freq, DateOffset):
        # if a passed freq is None, don't infer automatically
        if freq != 'infer':
            freq = frequencies.to_offset(freq)
        else:
            freq_infer = True
            freq = None
    return freq, freq_infer 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:27,代碼來源:datetimelike.py

示例4: __new__

# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def __new__(cls, freq=None):
        """
        Parameters
        ----------
        freq : frequency
        """

        if isinstance(freq, PeriodDtype):
            return freq

        elif freq is None:
            # empty constructor for pickle compat
            return object.__new__(cls)

        from pandas.tseries.offsets import DateOffset
        if not isinstance(freq, DateOffset):
            freq = cls._parse_dtype_strict(freq)

        try:
            return cls._cache[freq.freqstr]
        except KeyError:
            u = object.__new__(cls)
            u.freq = freq
            cls._cache[freq.freqstr] = u
            return u 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:27,代碼來源:dtypes.py

示例5: _apply_loffset

# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def _apply_loffset(self, result):
        """
        If loffset is set, offset the result index.

        This is NOT an idempotent routine, it will be applied
        exactly once to the result.

        Parameters
        ----------
        result : Series or DataFrame
            the result of resample
        """

        needs_offset = (
            isinstance(self.loffset, (DateOffset, timedelta,
                                      np.timedelta64)) and
            isinstance(result.index, DatetimeIndex) and
            len(result.index) > 0
        )

        if needs_offset:
            result.index = result.index + self.loffset

        self.loffset = None
        return result 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:27,代碼來源:resample.py

示例6: _get_freq

# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def _get_freq(ax, series):
    # get frequency from data
    freq = getattr(series.index, 'freq', None)
    if freq is None:
        freq = getattr(series.index, 'inferred_freq', None)

    ax_freq = _get_ax_freq(ax)

    # use axes freq if no data freq
    if freq is None:
        freq = ax_freq

    # get the period frequency
    if isinstance(freq, DateOffset):
        freq = freq.rule_code
    else:
        freq = frequencies.get_base_alias(freq)

    freq = frequencies.get_period_alias(freq)
    return freq, ax_freq 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:22,代碼來源:_timeseries.py

示例7: _get_offset

# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def _get_offset(self, klass, value=1, normalize=False):
        # create instance from offset class
        if klass is FY5253:
            klass = klass(n=value, startingMonth=1, weekday=1,
                          variation='last', normalize=normalize)
        elif klass is FY5253Quarter:
            klass = klass(n=value, startingMonth=1, weekday=1,
                          qtr_with_extra_week=1, variation='last',
                          normalize=normalize)
        elif klass is LastWeekOfMonth:
            klass = klass(n=value, weekday=5, normalize=normalize)
        elif klass is WeekOfMonth:
            klass = klass(n=value, week=1, weekday=5, normalize=normalize)
        elif klass is Week:
            klass = klass(n=value, weekday=5, normalize=normalize)
        elif klass is DateOffset:
            klass = klass(days=value, normalize=normalize)
        else:
            try:
                klass = klass(value, normalize=normalize)
            except Exception:
                klass = klass(normalize=normalize)
        return klass 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:25,代碼來源:test_offsets.py

示例8: _validate_frequency

# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def _validate_frequency(cls, index, freq, **kwargs):
        """
        Validate that a frequency is compatible with the values of a given
        DatetimeIndex or TimedeltaIndex

        Parameters
        ----------
        index : DatetimeIndex or TimedeltaIndex
            The index on which to determine if the given frequency is valid
        freq : DateOffset
            The frequency to validate
        """
        inferred = index.inferred_freq
        if index.empty or inferred == freq.freqstr:
            return None

        on_freq = cls._generate(
            index[0], None, len(index), None, freq, **kwargs)
        if not np.array_equal(index.asi8, on_freq.asi8):
            msg = ('Inferred frequency {infer} from passed values does not '
                   'conform to passed frequency {passed}')
            raise ValueError(msg.format(infer=inferred, passed=freq.freqstr)) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:24,代碼來源:datetimelike.py

示例9: _apply_loffset

# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def _apply_loffset(self, result):
        """
        if loffset is set, offset the result index

        This is NOT an idempotent routine, it will be applied
        exactly once to the result.

        Parameters
        ----------
        result : Series or DataFrame
            the result of resample
        """

        needs_offset = (
            isinstance(self.loffset, (DateOffset, timedelta)) and
            isinstance(result.index, DatetimeIndex) and
            len(result.index) > 0
        )

        if needs_offset:
            result.index = result.index + self.loffset

        self.loffset = None
        return result 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:26,代碼來源:resample.py

示例10: _get_freq

# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def _get_freq(ax, series):
    # get frequency from data
    freq = getattr(series.index, 'freq', None)
    if freq is None:
        freq = getattr(series.index, 'inferred_freq', None)

    ax_freq = getattr(ax, 'freq', None)

    # use axes freq if no data freq
    if freq is None:
        freq = ax_freq

    # get the period frequency
    if isinstance(freq, DateOffset):
        freq = freq.rule_code
    else:
        freq = frequencies.get_base_alias(freq)

    freq = frequencies.get_period_alias(freq)

    return freq 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:23,代碼來源:plotting.py

示例11: _use_dynamic_x

# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def _use_dynamic_x(ax, data):
    freq = _get_index_freq(data)
    ax_freq = _get_ax_freq(ax)

    if freq is None:  # convert irregular if axes has freq info
        freq = ax_freq
    else:  # do not use tsplot if irregular was plotted first
        if (ax_freq is None) and (len(ax.get_lines()) > 0):
            return False

    if freq is None:
        return False

    if isinstance(freq, DateOffset):
        freq = freq.rule_code
    else:
        freq = get_base_alias(freq)
    freq = frequencies.get_period_alias(freq)

    if freq is None:
        return False

    # hack this for 0.10.1, creating more technical debt...sigh
    if isinstance(data.index, ABCDatetimeIndex):
        base = get_freq(freq)
        x = data.index
        if (base <= FreqGroup.FR_DAY):
            return x[:1].is_normalized
        return Period(x[0], freq).to_timestamp(tz=x.tz) == x[0]
    return True 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:32,代碼來源:_timeseries.py

示例12: _maybe_convert_index

# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def _maybe_convert_index(ax, data):
    # tsplot converts automatically, but don't want to convert index
    # over and over for DataFrames
    if isinstance(data.index, ABCDatetimeIndex):
        freq = getattr(data.index, 'freq', None)

        if freq is None:
            freq = getattr(data.index, 'inferred_freq', None)
        if isinstance(freq, DateOffset):
            freq = freq.rule_code

        if freq is None:
            freq = _get_ax_freq(ax)

        if freq is None:
            raise ValueError('Could not get frequency alias for plotting')

        freq = get_base_alias(freq)
        freq = frequencies.get_period_alias(freq)

        data = data.to_period(freq=freq)
    return data


# Patch methods for subplot. Only format_dateaxis is currently used.
# Do we need the rest for convenience? 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:28,代碼來源:_timeseries.py

示例13: test_to_M8

# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def test_to_M8():
    valb = datetime(2007, 10, 1)
    valu = _to_M8(valb)
    assert isinstance(valu, np.datetime64)


#####
# DateOffset Tests
##### 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:11,代碼來源:test_offsets.py

示例14: test_offset_freqstr

# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def test_offset_freqstr(self, offset_types):
        offset = self._get_offset(offset_types)

        freqstr = offset.freqstr
        if freqstr not in ('<Easter>',
                           "<DateOffset: days=1>",
                           'LWOM-SAT', ):
            code = get_offset(freqstr)
            assert offset.rule_code == code 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:11,代碼來源:test_offsets.py

示例15: test_rollforward

# 需要導入模塊: from pandas.tseries import offsets [as 別名]
# 或者: from pandas.tseries.offsets import DateOffset [as 別名]
def test_rollforward(self, offset_types):
        expecteds = self.expecteds.copy()

        # result will not be changed if the target is on the offset
        no_changes = ['Day', 'MonthBegin', 'SemiMonthBegin', 'YearBegin',
                      'Week', 'Hour', 'Minute', 'Second', 'Milli', 'Micro',
                      'Nano', 'DateOffset']
        for n in no_changes:
            expecteds[n] = Timestamp('2011/01/01 09:00')

        expecteds['BusinessHour'] = Timestamp('2011-01-03 09:00:00')
        expecteds['CustomBusinessHour'] = Timestamp('2011-01-03 09:00:00')

        # but be changed when normalize=True
        norm_expected = expecteds.copy()
        for k in norm_expected:
            norm_expected[k] = Timestamp(norm_expected[k].date())

        normalized = {'Day': Timestamp('2011-01-02 00:00:00'),
                      'DateOffset': Timestamp('2011-01-02 00:00:00'),
                      'MonthBegin': Timestamp('2011-02-01 00:00:00'),
                      'SemiMonthBegin': Timestamp('2011-01-15 00:00:00'),
                      'YearBegin': Timestamp('2012-01-01 00:00:00'),
                      'Week': Timestamp('2011-01-08 00:00:00'),
                      'Hour': Timestamp('2011-01-01 00:00:00'),
                      'Minute': Timestamp('2011-01-01 00:00:00'),
                      'Second': Timestamp('2011-01-01 00:00:00'),
                      'Milli': Timestamp('2011-01-01 00:00:00'),
                      'Micro': Timestamp('2011-01-01 00:00:00')}
        norm_expected.update(normalized)

        sdt = datetime(2011, 1, 1, 9, 0)
        ndt = np_datetime64_compat('2011-01-01 09:00Z')

        for dt in [sdt, ndt]:
            expected = expecteds[offset_types.__name__]
            self._check_offsetfunc_works(offset_types, 'rollforward', dt,
                                         expected)
            expected = norm_expected[offset_types.__name__]
            self._check_offsetfunc_works(offset_types, 'rollforward', dt,
                                         expected, normalize=True) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:43,代碼來源:test_offsets.py


注:本文中的pandas.tseries.offsets.DateOffset方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。