當前位置: 首頁>>代碼示例>>Python>>正文


Python pandas.to_timedelta方法代碼示例

本文整理匯總了Python中pandas.to_timedelta方法的典型用法代碼示例。如果您正苦於以下問題:Python pandas.to_timedelta方法的具體用法?Python pandas.to_timedelta怎麽用?Python pandas.to_timedelta使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pandas的用法示例。


在下文中一共展示了pandas.to_timedelta方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_get_indexer

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import to_timedelta [as 別名]
def test_get_indexer(self):
        idx = pd.to_timedelta(['0 days', '1 days', '2 days'])
        tm.assert_numpy_array_equal(idx.get_indexer(idx),
                                    np.array([0, 1, 2], dtype=np.intp))

        target = pd.to_timedelta(['-1 hour', '12 hours', '1 day 1 hour'])
        tm.assert_numpy_array_equal(idx.get_indexer(target, 'pad'),
                                    np.array([-1, 0, 1], dtype=np.intp))
        tm.assert_numpy_array_equal(idx.get_indexer(target, 'backfill'),
                                    np.array([0, 1, 2], dtype=np.intp))
        tm.assert_numpy_array_equal(idx.get_indexer(target, 'nearest'),
                                    np.array([0, 1, 1], dtype=np.intp))

        res = idx.get_indexer(target, 'nearest',
                              tolerance=Timedelta('1 hour'))
        tm.assert_numpy_array_equal(res, np.array([0, -1, 1], dtype=np.intp)) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_indexing.py

示例2: test_to_timedelta_on_missing_values

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import to_timedelta [as 別名]
def test_to_timedelta_on_missing_values(self):
        # GH5438
        timedelta_NaT = np.timedelta64('NaT')

        actual = pd.to_timedelta(Series(['00:00:01', np.nan]))
        expected = Series([np.timedelta64(1000000000, 'ns'),
                           timedelta_NaT], dtype='<m8[ns]')
        assert_series_equal(actual, expected)

        actual = pd.to_timedelta(Series(['00:00:01', pd.NaT]))
        assert_series_equal(actual, expected)

        actual = pd.to_timedelta(np.nan)
        assert actual.value == timedelta_NaT.astype('int64')

        actual = pd.to_timedelta(pd.NaT)
        assert actual.value == timedelta_NaT.astype('int64') 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:19,代碼來源:test_tools.py

示例3: test_interp_timedelta64

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import to_timedelta [as 別名]
def test_interp_timedelta64(self):
        # GH 6424
        df = Series([1, np.nan, 3],
                    index=pd.to_timedelta([1, 2, 3]))
        result = df.interpolate(method='time')
        expected = Series([1., 2., 3.],
                          index=pd.to_timedelta([1, 2, 3]))
        assert_series_equal(result, expected)

        # test for non uniform spacing
        df = Series([1, np.nan, 3],
                    index=pd.to_timedelta([1, 2, 4]))
        result = df.interpolate(method='time')
        expected = Series([1., 1.666667, 3.],
                          index=pd.to_timedelta([1, 2, 4]))
        assert_series_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_missing.py

示例4: test_constructor_dict_timedelta_index

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import to_timedelta [as 別名]
def test_constructor_dict_timedelta_index(self):
        # GH #12169 : Resample category data with timedelta index
        # construct Series from dict as data and TimedeltaIndex as index
        # will result NaN in result Series data
        expected = self.series_klass(
            data=['A', 'B', 'C'],
            index=pd.to_timedelta([0, 10, 20], unit='s')
        )

        result = self.series_klass(
            data={pd.to_timedelta(0, unit='s'): 'A',
                  pd.to_timedelta(10, unit='s'): 'B',
                  pd.to_timedelta(20, unit='s'): 'C'},
            index=pd.to_timedelta([0, 10, 20], unit='s')
        )
        self._assert_series_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_api.py

示例5: test_cummin_timedelta64

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import to_timedelta [as 別名]
def test_cummin_timedelta64(self):
        s = pd.Series(pd.to_timedelta(['NaT',
                                       '2 min',
                                       'NaT',
                                       '1 min',
                                       'NaT',
                                       '3 min', ]))

        expected = pd.Series(pd.to_timedelta(['NaT',
                                              '2 min',
                                              'NaT',
                                              '1 min',
                                              'NaT',
                                              '1 min', ]))
        result = s.cummin(skipna=True)
        tm.assert_series_equal(expected, result)

        expected = pd.Series(pd.to_timedelta(['NaT',
                                              '2 min',
                                              '2 min',
                                              '1 min',
                                              '1 min',
                                              '1 min', ]))
        result = s.cummin(skipna=False)
        tm.assert_series_equal(expected, result) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:27,代碼來源:test_analytics.py

示例6: test_cummax_timedelta64

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import to_timedelta [as 別名]
def test_cummax_timedelta64(self):
        s = pd.Series(pd.to_timedelta(['NaT',
                                       '2 min',
                                       'NaT',
                                       '1 min',
                                       'NaT',
                                       '3 min', ]))

        expected = pd.Series(pd.to_timedelta(['NaT',
                                              '2 min',
                                              'NaT',
                                              '2 min',
                                              'NaT',
                                              '3 min', ]))
        result = s.cummax(skipna=True)
        tm.assert_series_equal(expected, result)

        expected = pd.Series(pd.to_timedelta(['NaT',
                                              '2 min',
                                              '2 min',
                                              '2 min',
                                              '2 min',
                                              '3 min', ]))
        result = s.cummax(skipna=False)
        tm.assert_series_equal(expected, result) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:27,代碼來源:test_analytics.py

示例7: test_timedelta64_dtype_array_returned

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import to_timedelta [as 別名]
def test_timedelta64_dtype_array_returned(self):
        # GH 9431
        expected = np.array([31200, 45678, 10000], dtype='m8[ns]')

        td_index = pd.to_timedelta([31200, 45678, 31200, 10000, 45678])
        result = algos.unique(td_index)
        tm.assert_numpy_array_equal(result, expected)
        assert result.dtype == expected.dtype

        s = Series(td_index)
        result = algos.unique(s)
        tm.assert_numpy_array_equal(result, expected)
        assert result.dtype == expected.dtype

        arr = s.values
        result = algos.unique(arr)
        tm.assert_numpy_array_equal(result, expected)
        assert result.dtype == expected.dtype 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:20,代碼來源:test_algos.py

示例8: test_mode_dropna

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import to_timedelta [as 別名]
def test_mode_dropna(self, dropna, expected):

        df = DataFrame({"A": [12, 12, 19, 11],
                        "B": [10, 10, np.nan, 3],
                        "C": [1, np.nan, np.nan, np.nan],
                        "D": [np.nan, np.nan, 'a', np.nan],
                        "E": Categorical([np.nan, np.nan, 'a', np.nan]),
                        "F": to_datetime(['NaT', '2000-1-2', 'NaT', 'NaT']),
                        "G": to_timedelta(['1 days', 'nan', 'nan', 'nan']),
                        "H": [8, 8, 9, 9],
                        "I": [9, 9, 8, 8],
                        "J": [1, 1, np.nan, np.nan],
                        "K": Categorical(['a', np.nan, 'a', np.nan]),
                        "L": to_datetime(['2000-1-2', '2000-1-2',
                                          'NaT', 'NaT']),
                        "M": to_timedelta(['1 days', 'nan',
                                           '1 days', 'nan']),
                        "N": np.arange(4, dtype='int64')})

        result = df[sorted(list(expected.keys()))].mode(dropna=dropna)
        expected = DataFrame(expected)
        tm.assert_frame_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:24,代碼來源:test_analytics.py

示例9: test_sum_nanops_timedelta

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import to_timedelta [as 別名]
def test_sum_nanops_timedelta(self):
        # prod isn't defined on timedeltas
        idx = ['a', 'b', 'c']
        df = pd.DataFrame({"a": [0, 0],
                           "b": [0, np.nan],
                           "c": [np.nan, np.nan]})

        df2 = df.apply(pd.to_timedelta)

        # 0 by default
        result = df2.sum()
        expected = pd.Series([0, 0, 0], dtype='m8[ns]', index=idx)
        tm.assert_series_equal(result, expected)

        # min_count=0
        result = df2.sum(min_count=0)
        tm.assert_series_equal(result, expected)

        # min_count=1
        result = df2.sum(min_count=1)
        expected = pd.Series([0, 0, np.nan], dtype='m8[ns]', index=idx)
        tm.assert_series_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:24,代碼來源:test_analytics.py

示例10: test_tdi_add_timestamp_nat_masking

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import to_timedelta [as 別名]
def test_tdi_add_timestamp_nat_masking(self):
        # GH#17991 checking for overflow-masking with NaT
        tdinat = pd.to_timedelta(['24658 days 11:15:00', 'NaT'])

        tsneg = Timestamp('1950-01-01')
        ts_neg_variants = [tsneg,
                           tsneg.to_pydatetime(),
                           tsneg.to_datetime64().astype('datetime64[ns]'),
                           tsneg.to_datetime64().astype('datetime64[D]')]

        tspos = Timestamp('1980-01-01')
        ts_pos_variants = [tspos,
                           tspos.to_pydatetime(),
                           tspos.to_datetime64().astype('datetime64[ns]'),
                           tspos.to_datetime64().astype('datetime64[D]')]

        for variant in ts_neg_variants + ts_pos_variants:
            res = tdinat + variant
            assert res[1] is pd.NaT 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:21,代碼來源:test_timedelta64.py

示例11: test_apply_to_timedelta

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import to_timedelta [as 別名]
def test_apply_to_timedelta(self):
        timedelta_NaT = pd.to_timedelta('NaT')

        list_of_valid_strings = ['00:00:01', '00:00:02']
        a = pd.to_timedelta(list_of_valid_strings)
        b = Series(list_of_valid_strings).apply(pd.to_timedelta)
        # Can't compare until apply on a Series gives the correct dtype
        # assert_series_equal(a, b)

        list_of_strings = ['00:00:01', np.nan, pd.NaT, timedelta_NaT]

        # TODO: unused?
        a = pd.to_timedelta(list_of_strings)  # noqa
        b = Series(list_of_strings).apply(pd.to_timedelta)  # noqa
        # Can't compare until apply on a Series gives the correct dtype
        # assert_series_equal(a, b) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_timedelta.py

示例12: test_none

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import to_timedelta [as 別名]
def test_none(self):
        delta_1d = pd.to_timedelta(1, unit='D')
        delta_0d = pd.to_timedelta(0, unit='D')
        delta_1s = pd.to_timedelta(1, unit='s')
        delta_500ms = pd.to_timedelta(500, unit='ms')

        drepr = lambda x: x._repr_base()
        assert drepr(delta_1d) == "1 days"
        assert drepr(-delta_1d) == "-1 days"
        assert drepr(delta_0d) == "0 days"
        assert drepr(delta_1s) == "0 days 00:00:01"
        assert drepr(delta_500ms) == "0 days 00:00:00.500000"
        assert drepr(delta_1d + delta_1s) == "1 days 00:00:01"
        assert drepr(-delta_1d + delta_1s) == "-1 days +00:00:01"
        assert drepr(delta_1d + delta_500ms) == "1 days 00:00:00.500000"
        assert drepr(-delta_1d + delta_500ms) == "-1 days +00:00:00.500000" 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_format.py

示例13: test_sub_day

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import to_timedelta [as 別名]
def test_sub_day(self):
        delta_1d = pd.to_timedelta(1, unit='D')
        delta_0d = pd.to_timedelta(0, unit='D')
        delta_1s = pd.to_timedelta(1, unit='s')
        delta_500ms = pd.to_timedelta(500, unit='ms')

        drepr = lambda x: x._repr_base(format='sub_day')
        assert drepr(delta_1d) == "1 days"
        assert drepr(-delta_1d) == "-1 days"
        assert drepr(delta_0d) == "00:00:00"
        assert drepr(delta_1s) == "00:00:01"
        assert drepr(delta_500ms) == "00:00:00.500000"
        assert drepr(delta_1d + delta_1s) == "1 days 00:00:01"
        assert drepr(-delta_1d + delta_1s) == "-1 days +00:00:01"
        assert drepr(delta_1d + delta_500ms) == "1 days 00:00:00.500000"
        assert drepr(-delta_1d + delta_500ms) == "-1 days +00:00:00.500000" 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_format.py

示例14: setup_method

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import to_timedelta [as 別名]
def setup_method(self, datapath):
        self.dirpath = datapath("io", "sas", "data")
        self.data = []
        self.test_ix = [list(range(1, 16)), [16]]
        for j in 1, 2:
            fname = os.path.join(
                self.dirpath, "test_sas7bdat_{j}.csv".format(j=j))
            df = pd.read_csv(fname)
            epoch = pd.datetime(1960, 1, 1)
            t1 = pd.to_timedelta(df["Column4"], unit='d')
            df["Column4"] = epoch + t1
            t2 = pd.to_timedelta(df["Column12"], unit='d')
            df["Column12"] = epoch + t2
            for k in range(df.shape[1]):
                col = df.iloc[:, k]
                if col.dtype == np.int64:
                    df.iloc[:, k] = df.iloc[:, k].astype(np.float64)
                elif col.dtype == np.dtype('O'):
                    if PY2:
                        f = lambda x: (x.decode('utf-8') if
                                       isinstance(x, str) else x)
                        df.iloc[:, k] = df.iloc[:, k].apply(f)
            self.data.append(df) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:25,代碼來源:test_sas7bdat.py

示例15: _wrap_result

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import to_timedelta [as 別名]
def _wrap_result(self, result, block=None, obj=None):
        """
        Wrap a single result.
        """

        if obj is None:
            obj = self._selected_obj
        index = obj.index

        if isinstance(result, np.ndarray):

            # coerce if necessary
            if block is not None:
                if is_timedelta64_dtype(block.values.dtype):
                    from pandas import to_timedelta
                    result = to_timedelta(
                        result.ravel(), unit='ns').values.reshape(result.shape)

            if result.ndim == 1:
                from pandas import Series
                return Series(result, index, name=obj.name)

            return type(obj)(result, index=index, columns=block.columns)
        return result 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:26,代碼來源:window.py


注:本文中的pandas.to_timedelta方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。