當前位置: 首頁>>代碼示例>>Python>>正文


Python testing.assert_frame_equal方法代碼示例

本文整理匯總了Python中pandas.testing.assert_frame_equal方法的典型用法代碼示例。如果您正苦於以下問題:Python testing.assert_frame_equal方法的具體用法?Python testing.assert_frame_equal怎麽用?Python testing.assert_frame_equal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pandas.testing的用法示例。


在下文中一共展示了testing.assert_frame_equal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_iterative

# 需要導入模塊: from pandas import testing [as 別名]
# 或者: from pandas.testing import assert_frame_equal [as 別名]
def test_iterative(self):
        """Test the iterative behaviour."""

        # SINGLE STEP
        index_class = Full()
        pairs = index_class.index((self.a, self.b))
        pairs = pd.DataFrame(index=pairs).sort_index()

        # MULTI STEP
        index_class = Full()

        pairs1 = index_class.index((self.a[0:50], self.b))
        pairs2 = index_class.index((self.a[50:100], self.b))

        pairs_split = pairs1.append(pairs2)
        pairs_split = pd.DataFrame(index=pairs_split).sort_index()

        pdt.assert_frame_equal(pairs, pairs_split)
        # note possible to sort MultiIndex, so made a frame out of it. 
開發者ID:J535D165,項目名稱:recordlinkage,代碼行數:21,代碼來源:test_indexing.py

示例2: test_compare_custom_instance_type

# 需要導入模塊: from pandas import testing [as 別名]
# 或者: from pandas.testing import assert_frame_equal [as 別名]
def test_compare_custom_instance_type(self):

        A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']})
        B = DataFrame({'col': ['abc', 'abd', 'abc', 'abc', '123']})
        ix = MultiIndex.from_arrays([A.index.values, B.index.values])

        def call(s1, s2):

            # this should raise on incorrect types
            assert isinstance(s1, np.ndarray)
            assert isinstance(s2, np.ndarray)

            return np.ones(len(s1), dtype=np.int)

        comp = recordlinkage.Compare()
        comp.compare_vectorized(lambda s1, s2: np.ones(len(s1), dtype=np.int),
                                'col', 'col')
        result = comp.compute(ix, A, B)
        expected = DataFrame([1, 1, 1, 1, 1], index=ix)
        pdt.assert_frame_equal(result, expected) 
開發者ID:J535D165,項目名稱:recordlinkage,代碼行數:22,代碼來源:test_compare.py

示例3: test_compare_custom_vectorized_dedup

# 需要導入模塊: from pandas import testing [as 別名]
# 或者: from pandas.testing import assert_frame_equal [as 別名]
def test_compare_custom_vectorized_dedup(self):

        A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']})
        ix = MultiIndex.from_arrays([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]])

        # test without label
        comp = recordlinkage.Compare()
        comp.compare_vectorized(lambda s1, s2: np.ones(len(s1), dtype=np.int),
                                'col', 'col')
        result = comp.compute(ix, A)
        expected = DataFrame([1, 1, 1, 1, 1], index=ix)
        pdt.assert_frame_equal(result, expected)

        # test with label
        comp = recordlinkage.Compare()
        comp.compare_vectorized(
            lambda s1, s2: np.ones(len(s1), dtype=np.int),
            'col',
            'col',
            label='test')
        result = comp.compute(ix, A)
        expected = DataFrame([1, 1, 1, 1, 1], index=ix, columns=['test'])
        pdt.assert_frame_equal(result, expected) 
開發者ID:J535D165,項目名稱:recordlinkage,代碼行數:25,代碼來源:test_compare.py

示例4: test_parallel_comparing_api

# 需要導入模塊: from pandas import testing [as 別名]
# 或者: from pandas.testing import assert_frame_equal [as 別名]
def test_parallel_comparing_api(self):

        # use single job
        comp = recordlinkage.Compare(n_jobs=1)
        comp.exact('given_name', 'given_name', label='my_feature_label')
        result_single = comp.compute(self.index_AB, self.A, self.B)
        result_single.sort_index(inplace=True)

        # use two jobs
        comp = recordlinkage.Compare(n_jobs=2)
        comp.exact('given_name', 'given_name', label='my_feature_label')
        result_2processes = comp.compute(self.index_AB, self.A, self.B)
        result_2processes.sort_index(inplace=True)

        # compare results
        pdt.assert_frame_equal(result_single, result_2processes) 
開發者ID:J535D165,項目名稱:recordlinkage,代碼行數:18,代碼來源:test_compare.py

示例5: test_parallel_comparing

# 需要導入模塊: from pandas import testing [as 別名]
# 或者: from pandas.testing import assert_frame_equal [as 別名]
def test_parallel_comparing(self):

        # use single job
        comp = recordlinkage.Compare(n_jobs=1)
        comp.exact('given_name', 'given_name', label='my_feature_label')
        result_single = comp.compute(self.index_AB, self.A, self.B)
        result_single.sort_index(inplace=True)

        # use two jobs
        comp = recordlinkage.Compare(n_jobs=2)
        comp.exact('given_name', 'given_name', label='my_feature_label')
        result_2processes = comp.compute(self.index_AB, self.A, self.B)
        result_2processes.sort_index(inplace=True)

        # use two jobs
        comp = recordlinkage.Compare(n_jobs=4)
        comp.exact('given_name', 'given_name', label='my_feature_label')
        result_4processes = comp.compute(self.index_AB, self.A, self.B)
        result_4processes.sort_index(inplace=True)

        # compare results
        pdt.assert_frame_equal(result_single, result_2processes)
        pdt.assert_frame_equal(result_single, result_4processes) 
開發者ID:J535D165,項目名稱:recordlinkage,代碼行數:25,代碼來源:test_compare.py

示例6: test_indexing_types

# 需要導入模塊: from pandas import testing [as 別名]
# 或者: from pandas.testing import assert_frame_equal [as 別名]
def test_indexing_types(self):
        # test the two types of indexing

        # this test needs improvement

        A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']})
        B = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']})
        B_reversed = B[::-1].copy()
        ix = MultiIndex.from_arrays([np.arange(5), np.arange(5)])

        # test with label indexing type
        comp_label = recordlinkage.Compare(indexing_type='label')
        comp_label.exact('col', 'col')
        result_label = comp_label.compute(ix, A, B_reversed)

        # test with position indexing type
        comp_position = recordlinkage.Compare(indexing_type='position')
        comp_position.exact('col', 'col')
        result_position = comp_position.compute(ix, A, B_reversed)

        assert (result_position.values == 1).all(axis=0)

        pdt.assert_frame_equal(result_label, result_position) 
開發者ID:J535D165,項目名稱:recordlinkage,代碼行數:25,代碼來源:test_compare.py

示例7: test_freq_nan

# 需要導入模塊: from pandas import testing [as 別名]
# 或者: from pandas.testing import assert_frame_equal [as 別名]
def test_freq_nan(self, missing_value):

        # data
        array_repeated = np.repeat(np.arange(10, dtype=np.float64), 10)
        array_repeated[90:] = np.nan
        array_tiled = np.tile(np.arange(20, dtype=np.float64), 5)

        # convert to pandas data
        A = DataFrame({'col': array_repeated})
        B = DataFrame({'col': array_tiled})
        ix = MultiIndex.from_arrays([A.index.values, B.index.values])

        # the part to test
        from recordlinkage.compare import Frequency

        comp = recordlinkage.Compare()
        comp.add(Frequency(left_on='col', missing_value=missing_value))
        result = comp.compute(ix, A, B)

        expected_np = np.ones((100, )) / 10
        expected_np[90:] = missing_value
        expected = DataFrame(expected_np, index=ix)
        pdt.assert_frame_equal(result, expected) 
開發者ID:J535D165,項目名稱:recordlinkage,代碼行數:25,代碼來源:test_compare.py

示例8: test_comparison_plot_inputs

# 需要導入模塊: from pandas import testing [as 別名]
# 或者: from pandas.testing import assert_frame_equal [as 別名]
def test_comparison_plot_inputs(input_results, expected_source_dfs, expected_plot_info):
    x_padding = 0.0
    num_bins = 10

    res_source_dfs, res_plot_info = test_module.comparison_plot_inputs(
        results=input_results[0],
        x_padding=x_padding,
        num_bins=num_bins,
        color_dict=None,
        fig_height=None,
    )

    assert res_plot_info == expected_plot_info

    assert res_source_dfs.keys() == expected_source_dfs.keys()
    for group, res_dict in res_source_dfs.items():
        for param, res_df in res_dict.items():
            exp_df = expected_source_dfs[group][param]
            pdt.assert_frame_equal(res_df, exp_df, check_like=True) 
開發者ID:OpenSourceEconomics,項目名稱:estimagic,代碼行數:21,代碼來源:test_comparison_plot_data_preparation.py

示例9: test_get

# 需要導入模塊: from pandas import testing [as 別名]
# 或者: from pandas.testing import assert_frame_equal [as 別名]
def test_get(mock):
    api_call_result = {'query_0': [{'balance': 212664.33000000002,
                                    'datetime': '2019-05-23T00:00:00Z'},
                                   {'balance': 212664.33000000002,
                                    'datetime': '2019-05-24T00:00:00Z'},
                                   {'balance': 212664.33000000002,
                                    'datetime': '2019-05-25T00:00:00Z'}]}
    mock.return_value = TestResponse(
        status_code=200, data=deepcopy(api_call_result))

    res = san.get(
        "historical_balance/santiment",
        address="0x1f3df0b8390bb8e9e322972c5e75583e87608ec2",
        from_date="2019-05-23",
        to_date="2019-05-26",
        interval="1d"
    )
    expected_df = convert_to_datetime_idx_df(api_call_result['query_0'])
    pdt.assert_frame_equal(res, expected_df, check_dtype=False) 
開發者ID:santiment,項目名稱:sanpy,代碼行數:21,代碼來源:test_get.py

示例10: test_get_without_transform

# 需要導入模塊: from pandas import testing [as 別名]
# 或者: from pandas.testing import assert_frame_equal [as 別名]
def test_get_without_transform(mock):
    api_call_result = {'query_0': [{'balance': 212664.33000000002,
                                    'datetime': '2019-05-23T00:00:00Z'},
                                   {'balance': 212664.33000000002,
                                    'datetime': '2019-05-24T00:00:00Z'},
                                   {'balance': 212664.33000000002,
                                    'datetime': '2019-05-25T00:00:00Z'}]}

    # The value is passed by refference, that's why deepcopy is used for
    # expected
    mock.return_value = TestResponse(
        status_code=200, data=deepcopy(api_call_result))

    res = san.get(
        "historical_balance/santiment",
        address="0x1f3df0b8390bb8e9e322972c5e75583e87608ec2",
        from_date="2019-05-23",
        to_date="2019-05-26",
        interval="1d"
    )
    expected_df = convert_to_datetime_idx_df(api_call_result['query_0'])
    pdt.assert_frame_equal(res, expected_df, check_dtype=False) 
開發者ID:santiment,項目名稱:sanpy,代碼行數:24,代碼來源:test_get.py

示例11: test_pandas_from_arrow

# 需要導入模塊: from pandas import testing [as 別名]
# 或者: from pandas.testing import assert_frame_equal [as 別名]
def test_pandas_from_arrow():
    arr = pa.array(["a", "b", "c"], pa.string())

    expected_series_woutname = pd.Series(fr.FletcherChunkedArray(arr))
    pdt.assert_series_equal(expected_series_woutname, fr.pandas_from_arrow(arr))

    expected_series_woutname = pd.Series(fr.FletcherContinuousArray(arr))
    pdt.assert_series_equal(
        expected_series_woutname, fr.pandas_from_arrow(arr, continuous=True)
    )

    rb = pa.RecordBatch.from_arrays([arr], ["column"])
    expected_df = pd.DataFrame({"column": fr.FletcherChunkedArray(arr)})
    table = pa.Table.from_arrays([arr], ["column"])
    pdt.assert_frame_equal(expected_df, fr.pandas_from_arrow(rb))
    pdt.assert_frame_equal(expected_df, fr.pandas_from_arrow(table))

    expected_df = pd.DataFrame({"column": fr.FletcherContinuousArray(arr)})
    table = pa.Table.from_arrays([arr], ["column"])
    pdt.assert_frame_equal(expected_df, fr.pandas_from_arrow(rb, continuous=True))
    pdt.assert_frame_equal(expected_df, fr.pandas_from_arrow(table, continuous=True)) 
開發者ID:xhochy,項目名稱:fletcher,代碼行數:23,代碼來源:test_base.py

示例12: is_same_as

# 需要導入模塊: from pandas import testing [as 別名]
# 或者: from pandas.testing import assert_frame_equal [as 別名]
def is_same_as(df, df_to_compare, **kwargs):
    """Asserts that two pd.DataFrames are equal.

    Args:
        df (pd.DataFrame): Any pd.DataFrame.
        df_to_compare (pd.DataFrame): A second pd.DataFrame.
        **kwargs (dict): Keyword arguments passed through to pandas' ``assert_frame_equal``.

    Returns:
        Original `df`.

    """
    try:
        tm.assert_frame_equal(df, df_to_compare, **kwargs)
    except AssertionError as exc:
        raise AssertionError("DataFrames are not equal") from exc
    return df 
開發者ID:ZaxR,項目名稱:bulwark,代碼行數:19,代碼來源:checks.py

示例13: test_has_set_within_vals

# 需要導入模塊: from pandas import testing [as 別名]
# 或者: from pandas.testing import assert_frame_equal [as 別名]
def test_has_set_within_vals():
    df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'c']})

    items = {'A': [1, 2, 3], 'B': ['a', 'b', 'c']}
    tm.assert_frame_equal(df, ck.has_set_within_vals(df, items))
    tm.assert_frame_equal(df, dc.HasSetWithinVals(items=items)(_noop)(df))

    items = {'A': [1, 2], 'B': ['a', 'b']}
    tm.assert_frame_equal(df, ck.has_set_within_vals(df, items))
    tm.assert_frame_equal(df, dc.HasSetWithinVals(items=items)(_noop)(df))

    items = {'A': [1, 2, 4], 'B': ['a', 'b', 'd']}
    with pytest.raises(AssertionError):
        ck.has_set_within_vals(df, items)
    with pytest.raises(AssertionError):
        dc.HasSetWithinVals(items=items)(_noop)(df) 
開發者ID:ZaxR,項目名稱:bulwark,代碼行數:18,代碼來源:test_checks.py

示例14: test_monotonic_increasing_lax

# 需要導入模塊: from pandas import testing [as 別名]
# 或者: from pandas.testing import assert_frame_equal [as 別名]
def test_monotonic_increasing_lax():
    df = pd.DataFrame([1, 2, 2])
    tm.assert_frame_equal(df, ck.is_monotonic(df, increasing=True))
    result = dc.IsMonotonic(increasing=True)(_add_n)(df)
    tm.assert_frame_equal(result, df + 1)

    df = pd.DataFrame([1, 2, 1])
    with pytest.raises(AssertionError):
        ck.is_monotonic(df, increasing=True)
    with pytest.raises(AssertionError):
        dc.IsMonotonic(increasing=True)(_add_n)(df)

    df = pd.DataFrame([3, 2, 1])
    with pytest.raises(AssertionError):
        ck.is_monotonic(df, increasing=True)
    with pytest.raises(AssertionError):
        dc.IsMonotonic(increasing=True)(_add_n)(df) 
開發者ID:ZaxR,項目名稱:bulwark,代碼行數:19,代碼來源:test_checks.py

示例15: test_monotonic_increasing_strict

# 需要導入模塊: from pandas import testing [as 別名]
# 或者: from pandas.testing import assert_frame_equal [as 別名]
def test_monotonic_increasing_strict():
    df = pd.DataFrame([1, 2, 3])
    tm.assert_frame_equal(df, ck.is_monotonic(df, increasing=True, strict=True))
    result = dc.IsMonotonic(increasing=True, strict=True)(_add_n)(df)
    tm.assert_frame_equal(result, df + 1)

    df = pd.DataFrame([1, 2, 2])
    with pytest.raises(AssertionError):
        ck.is_monotonic(df, increasing=True, strict=True)
    with pytest.raises(AssertionError):
        dc.IsMonotonic(increasing=True, strict=True)(_add_n)(df)

    df = pd.DataFrame([3, 2, 1])
    with pytest.raises(AssertionError):
        ck.is_monotonic(df, increasing=True, strict=True)
    with pytest.raises(AssertionError):
        dc.IsMonotonic(increasing=True, strict=True)(_add_n)(df) 
開發者ID:ZaxR,項目名稱:bulwark,代碼行數:19,代碼來源:test_checks.py


注:本文中的pandas.testing.assert_frame_equal方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。